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Abstract
Deep learning systems are known to be vulnerable to ad-

versarial examples. In particular, query-based black-box at-

tacks do not require knowledge of the deep learning model,

but can compute adversarial examples over the network

by submitting queries and inspecting returns. Recent work

largely improves the efficiency of those attacks, demonstrat-

ing their practicality on today’s ML-as-a-service platforms.

We propose Blacklight, a new defense against query-based

black-box adversarial attacks. Blacklight is driven by a fun-

damental insight: to compute adversarial examples, these at-

tacks perform iterative optimization over the network, pro-

ducing queries highly similar in the input space. Thus Black-

light detects query-based black-box attacks by detecting

highly similar queries, using an efficient similarity engine

operating on probabilistic content fingerprints. We evaluate

Blacklight against eight state-of-the-art attacks, across a vari-

ety of models and image classification tasks. Blacklight iden-

tifies them all, often after only a handful of queries. By re-

jecting all detected queries, Blacklight prevents any attack

from completing, even when persistent attackers continue

to submit queries after banned accounts or rejected queries.

Blacklight is also robust against several powerful counter-

measures, including an optimal black-box attack that approx-

imates white-box attacks in efficiency. Finally, we illustrate

how Blacklight generalizes to other domains like text classi-

fication.

1 Introduction

The vulnerability of deep neural networks (DNNs) to a va-

riety of adversarial examples is well documented. An ad-

versarial example is a maliciously modified input that looks

(nearly) identical to its original via human perception, but

gets misclassified by a DNN model. This vulnerability re-

mains a critical hurdle to the practical deployment of deep

learning systems in safety- and mission-critical applications,

such as autonomous driving or financial services.

∗Work done while visiting SAND Lab at the University of Chicago.
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Figure 1: Attack Scenario for black-box adversarial attacks.

Adversarial attacks can be broadly divided by whether

they assume white-box or black-box threat models. In the

white-box setting, the attacker has total access to the target

model, including its internal architecture, weights and param-

eters. Given a benign input, the attacker can directly compute

adversarial examples as an optimization problem. In contrast,

an attacker in the black-box setting can only interact with the

model by submitting queries and inspecting returns. Black-

box scenarios can be further divided based on the informa-

tion the classifier returns per query: score-based systems re-

turn a full probability distribution across labels, and decision-

based systems return only the output label.

The white-box threat model makes a strong assumption:

an attacker has obtained total access to the model, through

a server breach, a malicious insider, or other type of model

leak. Both security and ML communities have made con-

tinual advances in both attacks and defenses under this set-

ting – powerful attacks efficiently generate adversarial exam-

ples [12, 16, 27, 37, 71], which in turn spur work on robust

defenses that either prevent the generation of adversarial ex-

amples or detect them at inference time. While numerous ap-

proaches have been explored as defenses (e.g., model distilla-

tion [55], gradient obfuscation [8,21,47,61,65,77], adversar-

ial training [49, 82, 83], honeypots [62], and ensemble meth-

ods [68]), nearly all have been proven vulnerable to followup

attacks [4, 9–11, 28].

In contrast, black-box attacks assume a more realistic

threat model, where attackers interact with models via a

query interface such as ML-as-a-service platforms [81] (See

Fig 1). There are two types of black-box attacks. Most com-

mon are query-based attacks [5, 14, 15, 30, 53, 69], where an

attacker iteratively adapts the query input based on past query



results from the target model, until it produces a successful

adversarial example. Numerous efforts have developed in-

creasingly efficient attacks that require fewer queries to com-

plete the attack. Unfortunately, even as these attacks grow in

efficiency and practicality, there exists no effective defense

against them. Existing defense proposals [17, 34] focus on

detecting (and banning) query accounts displaying some “ad-

versarial” behaviors. While raising the attack cost, they are

ineffective against persistent attackers who switch accounts

to evade detection and complete the attack. The second type

of black-box attacks is substitute model attacks, where an at-

tacker queries the target model to train a local model, then

tries to transfer adversarial examples from the substitute to

the target [45, 56, 57]. These are currently addressed by a

line of effective and evolving defenses, including (ensemble)

adversarial training [68, 75].

In this work, we focus on defending against query-based

black-box attacks, even when persistent attackers switch ac-

count to evade detection. The fundamental insight driving

our work is that, in order to compute adversarial examples,

query-based black-box attacks perform iterative optimiza-

tion over the network, an incremental process that produces

queries highly similar in the input space. With this in mind,

we propose Blacklight, a novel defense that detects query-

based black-box attacks using an efficient content-similarity

engine. Blacklight detects the highly similar queries as part

of the iterative optimization process in the attack1, since be-

nign queries rarely share this level of similarity. Blacklight’s

query detection is account oblivious, thus is effective no mat-

ter how many accounts an attacker uses to submit queries.

Blacklight is highly scalable and lightweight. It detects

highly similar queries generated by iterative optimization us-

ing probabilistic fingerprints, a compact hash representation

computed for each input query. We design these fingerprints

such that queries highly similar in the input space will have

large overlap in their fingerprints. As such, Blacklight iden-

tifies an (incoming) query as part of a query-based black-

box attack, if its fingerprint matches any prior fingerprint by

more than a threshold. Since we use secure one-way hashes

to compute fingerprints, even an attacker aware of our algo-

rithm cannot optimize the content perturbation of a query to

disrupt its fingerprint and avoid detection.

We evaluate the efficacy of Blacklight against eight SOTA

query-based black-box attacks, including those using gra-

dient estimation, gradient-free attacks, and those targeting

score- and decision-based models. We experiment on a range

of image-based models from MNIST to ImageNet, and use

Lp distance metrics chosen by each attack. While these

attacks typically take thousands (or tens of thousands) of

queries to converge to a successful adversarial example,

1In practice, even the most efficient black box attacks issue thousands

of queries to generate a single attack, and nearly all such queries are con-

strained to be a small perturbation away from the benign input.

Blacklight detects all of them after the first 2–9 queries2.

More importantly, Blacklight detects the large majority of

all queries associated with an attack (e.g., >90% for all non-

Boundary attacks). By rejecting these detected attack queries,

Blacklight consistently reduces the attack success rate to 0%

for all eight attacks, even when attackers persist to submit

queries despite query rejection.

Our work makes the following key contributions.

• We propose a highly scalable, lightweight attack detection

system against query-based black-box attacks, using prob-

abilistic content fingerprint-based query matching to detect

(and mitigate) individual attack query on the fly.

• We discuss and demonstrate why existing account-based

defenses are insufficient to resist persistent attackers.

• We build formal analysis of our probabilistic fingerprints

to model both attack detection rates and false positives.

• We experimentally evaluate Blacklight against eight SOTA

black-box attacks on multiple datasets and image classifi-

cation models. Not only does Blacklight detect all eight

attacks, but it does so quickly, often after only a handful of

queries, for attacks that would require several thousands of

queries to succeed.

• We illustrate how Blacklight can be generalized beyond im-

age classification, using text classification as an example.

• We finally evaluate Blacklight and show it is highly robust

against a variety of adaptive countermeasures, including

those allowing larger, human-visible perturbations. Black-

light performs well even against two types of near-optimal

attacks: “query-efficient” attacks several orders of mag-

nitude more efficient than current methods, and “perfect-

gradient” attacks that approximate white-box attacks by

perfectly estimating the loss surface at each query.

The source-code for Blacklight is available at https://

sandlab.cs.uchicago.edu/blacklight.

2 Background on Black-box Attacks

As background, we briefly overview different types of black-

box attacks and describe today’s SOTA query-based black-

box attacks (the focus of our work). We discuss existing de-

fense proposals [17, 34] later in §4.

2.1 Overview of Black-box Attacks

Existing black-box attacks can be divided into two types:

substitute model attacks and query-based black-box attacks.

In this work, we target the latter.

Substitute Model Attacks. An attacker queries a target

model repeatedly, uses the query results to build a labeled

dataset and train a substitute model to approximate classifi-

cation boundaries of the model. The attacker then generates

2The exception is the Boundary attack, which starts its query search with

an image from the target label. Blacklight detects Boundary attacks after an

average of less than 50 queries (see Table 2).

https://sandlab.cs.uchicago.edu/blacklight
https://sandlab.cs.uchicago.edu/blacklight


adversarial examples on the substitute model (using a white-

box attack), hoping that they will succeed on the target model.

This attack can successfully produce untargeted adversarial

examples on small models like MNIST [56, 57], but is much

less successful when producing targeted attacks or targeting

larger models [45]. This spurs efforts to increase transferabil-

ity between substitute and target models [22, 31, 44, 76, 78].

Defending against substitute model attacks is an active

research area. Existing defenses include adversarial train-

ing [38], ensemble adversarial training [68], and adversarial

training with single-step R+FGSM attack [75]. We note that

ensemble adversarial training can be combined with Black-

light as a hybrid defense against both substitute model at-

tacks and query-based attacks (details in the Appendix §A).

Query-Based Black-Box Attacks. A more common and

effective attack is query-based black-box attacks. An attacker

queries the target model repeatedly, often remotely over a net-

work, to implement iterative optimization required to com-

pute adversarial examples. Specifically, based on the past

query results, the attacker iteratively perturbs the current

query to produce the next query, hoping to converge to a suc-

cessful adversarial example. Both gradient-estimation [14,

15,18,30,69] and gradient-free algorithms [3,5,53] were de-

veloped to reduce the number of queries required to produce

an adversarial example. While these attacks generally require

thousands to hundreds of thousands of queries to produce a

single adversarial example, they have proven to be effective,

often achieving 100% success rate even against large mod-

els. In fact, recent efforts show that these attacks can already

be successfully launched against real-world systems such as

Google Cloud Vision API [30], Clarifai [5], and real applica-

tions like traffic sign and license plate recognition [25]. Fi-

nally, recent works also leverage substitute model-based pri-

ors when configuring queries [19, 29, 33, 67], which we also

consider when evaluating Blacklight in §9.2.

2.2 SOTA Query-based Black-box Attacks

Our work targets query-based black-box attacks. We imple-

ment and test eight SOTA attacks (see Table 1). They cover

both score- and decision-based attacks, and attacks relying

on gradient estimation and those that do not. They all use Lp

bounded perturbations, a prevailing attack setting.

Gradient Estimation Gradient Estimation Free

Score-based NES - Query Limit [30] ECO [53]

Decision-based

NES - Label Only [30]

HSJA [14] QEBA [41]

Policy-Driven [79]

Boundary [6]

SurFree [51]

Table 1: We consider eight query-based black-box attacks.

NES (2 variants) [30]. NES enables efficient gradient esti-

mation using far fewer queries and applies natural evolution

strategies [73] to speed up the attack. NES has two variants:

NES query limit for score-based models and NES label-only

for decision-based models.

ECO [53]. Targeting score-based models, the attacker re-

places gradient estimation with an efficient discrete surro-

gate, leading to faster convergence.

Boundary [6]. It is the first attack targeting decision-based

models and does not use gradient estimation. To compute

the adversarial example for x0, the attacker starts from a ran-

dom sample x from the target label t, iteratively adjusts x to

“approach” x0 while remaining being classified to t, until the

difference between x0 and x is within a predefined budget.

HSJA [14]. It augments Boundary [6] with gradient ap-

proximation. In each iteration, a 2-step gradient estimation is

used to construct xt that gets closer to the decision boundary,

leading to much faster attack convergence than Boundary.

QEBA [41]. This is a variant of HSJA. Instead of estimat-

ing the full gradient vector, QEBA only estimates a core sub-

set of the gradient vector.

Policy-Driven [79]). This is another recent attack built on

top of HSJA. It applies a policy network to learn the best

optimization direction at each step.

SurFree [51]. This gradient-free attack leverages certain

geometrical properties to produce careful query trials along

diverse directions near the decision boundaries.

3 Threat Model and Design Goals

In this work, we focus on defense against query-based black-

box attacks for image classification. Our design principle

should extend to other domains, which we demonstrate in

§8.7 using text classification as an example. Here, we define

our threat model, design goals and success metrics.

Attacker. The attacker queries a target model (F) and uses

the query results to craft adversarial examples against it, i.e.,

finding the perturbed version of a benign input x0 that causes

F to misclassify it to a target label t. To do so, the attacker

repeatedly queries F with a sequence of n attack queries

x1, ...,xn. The attack is successful if

F(xn) = t and ||xn− x0||p < ε (1)

where xn is the computed adversarial example of x0 and ε is

the attacker’s perturbation budget. Existing works show that

a successful attack requires a large n, generally on the order

of 103-106. Note that while focusing on prevailing attacks

that bound perturbations by Lp distances, our defense should

extend in principle to other query-based attacks (e.g., patch,

semantic attack). We discuss in §8.3 preliminary results on

Sparse-RS [20], a query-based universal patch attack.

We make the following assumptions about the attacker:

• The attacker has no access to internal weights of F and can

only send queries to obtain outputs of F.

• The attacker has abundant computation power and re-

sources to submit millions of queries.

• The attacker controls multiple accounts and IP addresses,

and moves the attack across them if any IP addresses and/or



accounts are banned. Measurements have shown that at-

tackers often utilize Sybil accounts [23, 40, 80].

• We begin with standard attackers who are unaware of

Blacklight. Later in §9, we consider stronger adaptive at-

tackers who apply countermeasures against Blacklight.

Defender. The defender hosts the target model F. For each

query, F can either return the full classification probability

vector or only the classification label. We only make one

assumption on the defender, that it has a finite amount of

storage for use in attack detection. In practical terms, any de-

fender storing state related to past queries has to periodically

reset the storage, e.g., every 1 or 2 days, by clearing out the

state of all past (benign) queries.

Design Goals. We target four key goals for our defense.

• The defense should detect attack queries with high accu-

racy and high coverage, while maintaining a low false

positive rate. Since answering each attack query may leak

model information, the defense should detect as many at-

tack queries as possible.

• The defense should efficiently scale to industry production

systems. For example, Facebook’s content moderation sys-

tems process an average of 300M images per day, while

those at Twitter process 340M tweets/day [13, 70].

• The defense should incur low overhead in terms of run-

time (compared to model inference runtime) and storage.

• The defense must resist persistent attackers who can

move between accounts, and/or continue submitting attack

queries after account ban or query rejection.

4 Existing Defenses and Their Limitations

There are two known defenses against query-based black-

box attacks: Stateful Detection (SD) [17] and PRADA [34].

Both are account-driven and focus on detecting/banning

query accounts that submit attack queries. We now describe

their detection methods, and discuss why these defenses (and

their variations) are insufficient to resist persistent attackers

covered by our threat model.

Stateful Detection (SD) [17]. SD inspects each query ac-

count to decide whether it is malicious or not. Given an

account A and its queries submitted so far, SD examines

whether these queries display “certain properties” related to

computation of adversarial examples. Specifically, SD com-

putes, for an incoming query q from A, the average pair-wise

latent similarity between q and its k-nearest-neighbors in A’s

past queries. If the average latent similarity exceeds a thresh-

old, SD flags A as adversarial. To compute the latent similar-

ity, SD uses a pretrained similarity encoder to convert each

query image into a latent space vector.

PRADA [34]. Originally designed to detect attacks that

steal the target model, PRADA is shown to also detect query-

based black-box attacks [17]. The key insight is that queries

sent by an attacker are expected to have a characteristic distri-
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Figure 2: Existing defenses cannot stop persistent attackers

who switch accounts to continue attack queries.

bution different from those of benign accounts. PRADA cal-

culates the query distribution of each account based on the L2

distance among queries, and defines a standard benign distri-

bution computed from a set of benign queries. If an account

A’s query distribution shifts away from the standard benign

distribution, PRADA labels A as malicious.

Vulnerability to Persistent Attacks. While SD and

PRADA could flag an attacker who use a single account to

send queries, they are ineffective against attackers holding

multiple accounts, e.g. Sybil accounts [23]. Figure 2 plots an

example where an attacker completes an attack, by switching

accounts and continuing its queries after each detection by

SD. A similar strategy would also succeed against PRADA.

The two existing defenses are limited by two factors. First,

inspecting queries per-account puts a fundamental limit on

detection speed, i.e., the number of attack queries answered

by the model before detection. For both defenses, at the time

of detection, the attacker already had tens or more attack

queries answered by the model (e.g., 52 - 54 queries for SD

and 111-115 queries for PRADA, per our experiments in Ap-

pendix Table 8). Second, both defenses are designed to “slow

down” attackers by banning their current account rather than

preventing the attack query to proceed. Given the low cost

and prevalence of sybil accounts, attackers can easily bypass

these defenses. A “reactive” strategy is shown in Figure 2,

where 6 out of 328 attack queries (or 1.8%) were detected

and rejected and 322 got answered. An alternative “proac-

tive” strategy is to first run test cases to estimate the mini-

mum # of attack queries to get the account banned (e.g., 50),

and then during the attack, send less queries per account (e.g.,

30) to evade detection completely.

Adapting Account-based Defenses. Account-based query

inspection and mitigation is ineffective against attackers with

multiple query accounts. An effective defense needs to be ac-

count oblivious. One straightforward solution is to run a ver-

sion of SD or PRADA by putting all the queries into a single

account. This solution, however, does not scale to support

production ML systems facing millions of queries per day,

because SD and PRADA’s runtime complexity grows with

the number of prior queries. Consider a query database of

1 million low-resolution images (CIFAR10), our experiments

show that, for each incoming query, SD and PRADA intro-

duce a run-time latency of 24,000% and 6,800% compared

to the normal inference latency, respectively (details in §8.6).

PRADA also faces large accuracy drop, because each incom-



ing query produces little impact on the query distribution.

5 Blacklight

We propose Blacklight, a new defense to detect and mitigate

query-based black-box attacks against DNN models. Differ-

ent from existing defenses, Blacklight is account oblivious

and focuses on detecting individual attack queries on the fly

regardless of who sent them. Our design is driven by a fun-

damental insight that query-based black-box attacks produce

queries that are highly similar in the input space. Since be-

nign queries rarely share this level of similarity, these attacks

can be detected by identifying extremely high similarity in

queries while incurring low false positives. With this in mind,

we design Blacklight to focus on achieving fast, scalable and

robust similarity check across millions of image queries. Our

design includes two key components: (i) probabilistic con-

tent fingerprinting for fast and scalable attack detection, and

(ii) salted pixel quantization to resist adaptive attacks.

In the following, we present the fundamental insight driv-

ing our design, and the concept of probabilistic content fin-

gerprinting. Later in §6, we describe the salted pixel quanti-

zation and Blacklight’s detailed design.

5.1 Fundamental Insight: Presence of High

Similarity in Attack Queries

Blacklight exploits a fundamental insight on query-based

black-box attacks: in order to compute adversarial examples,

attackers need to perform iterative optimization over the net-

work, i.e., submitting one or more queries to the target model,

observing the query results, and using them to configure fur-

ther queries. While the specific design of iterative optimiza-

tion is algorithm-dependent3, the unified goal is to repeat-

edly refine the perturbation such that the query sequence con-

verges to an adversarial example xn satisfying eq (1). There-

fore, iterative optimization inevitably produces some queries

that are highly similar in the input space, i.e.,

there exist xk,x j,where ||xk− x j||p ≤ µ.

If µ is sufficiently smaller than the difference between most

benign images, we can accurately detect the attack by rec-

ognizing the presence of highly similar queries like (xk,x j)

within the stream of queries. Evading this type of detection

is extremely difficult (if not infeasible) since it requires every

attack query to be sufficiently dissimilar from any previous

attack queries.

We empirically verify the presence of highly similar

queries by running the eight SOTA query-based black-box

attacks (listed in Table 1) on the ImageNet classification

model. For all eight attacks, high similarity is consistently

3Some attack designs start with the original input and perturbs it towards

a misclassified target label [30, 53], while others start from an image in the

target label and work backwards towards the original input [6, 14, 30].

NES - 
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... ... ...

Figure 3: Examples of attack query sequence (x0,x1, ..,xn),
produced by three black-box attacks (NES, Boundary, HSJA).

While these attacks generate queries differently, the resulting

query sequences all contain some highly similar images.

observed across images in their attack query sequence. The

average L2 distance between just consecutive queries in an at-

tack sequence is already 20-380x smaller than analogous dis-

tance between benign images (estimated by randomly com-

paring 2000 pairs of benign images). Figure 3 shows some

visual examples from attack query sequences generated by

three attacks (NES-Query Limit, Boundary, HSJA). We omit

the other attacks since they produce similar results.

5.2 Fast and Scalable Similarity Check via

Probabilistic Fingerprinting

The above insight motivates us to detect query-based black-

box attacks by searching for the presence of highly similar

queries in a large stream of incoming and past queries. A key

challenge is how to run a fast and efficient similarity check.

Strawman Solutions. We first discuss two strawman solu-

tions and their problems. Earlier in §4 we discussed the query

similarity check used by SD [17] and its scalability issue.

Computing Lp distances. A naive approach would store

all past queries in a database and compare an incoming query

x to the entire database of n queries by computing their

image-level differences. Such raw comparison incurs heavy

costs both in query storage and computation, i.e., O(n). For

example, even for low resolution image queries (224×224

pixels, ImageNet), it takes 23 minutes to compare a query to

one million prior images, even using five threads on a 6-core

Intel Xeon server. This is clearly intractable in practice.

Locality-sensitive (LS) hashing. An alternative is to com-

pute a “signature” per query using LS hashes and compare

queries by their signatures. Many have used perceptual hash-

ing (e.g., PhotoDNA [2], dhash [35]), a type of LS hashes,

to match similar images for copyright resolution or child ex-

ploitation detection [2]. Using a hash table for lookup, the

runtime cost for checking each incoming query could reach

O(1) regardless of n. Unfortunately, these hashes are de-

signed to identify generic variants of an image, even those

that have undergone significant alterations. Thus they flag

similar benign queries (e.g., different frames of a video, mul-

tiple pictures of the same object) as adversarial, producing

false positives. We test dhash [35] on our attack detection and
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find that it produces over 10% false positives on the Flickr

dataset and 67% on our video dataset (§8.4). While unable to

test PhotoDNA since it is proprietary, we expect that it faces

the same issue since it focuses on detecting child exploitation

in images which requires considerable alterations.

Probabilistic Fingerprints. Blacklight overcomes these

challenges by applying probabilistic fingerprinting to detect

highly similar images. Our goal is to design a hash function

that is compact yet highly sensitive to very small changes in

the image. This dictates that we should use a highly lossy

function. Probabilistic fingerprinting achieves these proper-

ties and utilizes secure one-way hashes that cannot be eas-

ily reversed to evade detection and probabilistic downsam-

pling for efficiency. To fingerprint an image x, Blacklight

first transforms x into a set of continuous and overlapping

segments of a fixed length w, then applies a one-way hash to

each segment to produce a large set of N hash values. From

these N hash values, Blacklight chooses a small set proba-

bilistically (e.g., the top 50) as x’s probabilistic fingerprint.

Figure 4 illustrates Blacklight’s attack detection process.

For an incoming query x, Blacklight extracts its probabilistic

fingerprint and stores it in the database. Blacklight runs an ef-

ficient hash match algorithm to detect overlaps between x’s

fingerprint and those in the database. Upon detecting suffi-

cient overlap between x and an existing fingerprint y, it flags

(x, y) as a pair of attack queries.

Key Benefits. Our fingerprint scheme has the property that

any two highly similar queries will produce a near-perfect

match in their fingerprints. In other words, small changes to

an image are highly unlikely to impact its fingerprint. The

use of secure one-way hash and probabilistic downsampling

means that unless they can reverse the hashing algorithm, an

adversary cannot alter an image’s fingerprint without signifi-

cantly altering its content (further confirmed in §9.1).

Our fingerprints also greatly reduce the storage overhead

of past queries, and the computation costs of comparing

queries in similarity. Specifically, the search for highly simi-

lar queries reduces down to a hash set comparison problem,

which takes near-constant time in general (see §6).

Prior Work on Probabilistic Fingerprints. Probabilistic

fingerprints have been used for similarity detection in text

(e.g., detecting code plagiarism [7,24,59,63], network intru-

sion and malware [54, 58, 64] and spam emails [46, 84]) and

file systems [52]. The contributions of our work include i)

extending probabilistic fingerprints beyond the text domain,

ii) customizing its design to identify similar image queries to

a DNN model (see §6), and iii) a formal analysis to model

both false positives and attack detection rates and their de-

pendency on fingerprinting parameters (see §7).

6 Detailed Design of Blacklight

We now present the detailed design of Blacklight, including

preprocessing, probabilistic fingerprinting, and comparison

algorithms, which together form our proposed detector. We

also discuss options to mitigate attacks after detection. Note

that Blacklight works as an external add-on, and requires no

modifications to the DNN model.

6.1 Preprocessing: Salted Pixel Quantization

Given an incoming image query x, Blacklight first runs a

quantization function on each pixel of x. This serves two

purposes. First, it converts continuous pixel values into a

finite set of discrete values, which are then used to com-

pute hashes of x during fingerprinting. Second, quantization

increases similarity between (attack) queries. This is par-

ticularly true for black-box attacks that iteratively optimize

queries by gradually modifying every single pixel on the im-

age [6, 14, 30] – the use of quantization effectively nullifies

changes to image hashes created by these minor modifica-

tions without inducing false positives. We confirm this empir-

ically 4 and find the hash overlap between attack queries (on

CIFAR10) increases rapidly with the quantization step q to

approach 100%, while those between benign queries remain

low. Note that this step is used only for attack detection. If

the input is considered benign, the original, unaltered query

is sent to the DNN model.

Furthermore, Blacklight employs a salted pixel quantiza-

4Details in our extended version [42]
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Figure 6: We empirically show that probabilistic fingerprints preserve the query similarity in black-box attack sequences. We

plot the maximum fingerprint overlap between x and that of any prior query in a benign query sequence (left most) and eight

attack query sequences. Here the maximum matching is bounded by S = 50.

tion function to resist reverse engineering attacks:

Q(x,saltQ,q) = ⌊
(x+ saltQ) mod 255

q
⌋ (2)

where saltQ is a randomly generated salt image (of the same

dimensions as x) and q is the quantization step (a system

parameter). Here all pixel values of x and saltQ are normal-

ized to [0,255]. Later in §9 we show adding a random salt

improves Blacklight’s robustness against adaptive attacks.

6.2 Computing Probabilistic Fingerprints

We now describe the detailed process to compute the proba-

bilistic fingerprint on a (quantized) query image x.

Converting an image into N segments. Blacklight first

“flattens” the 2D image into a single pixel sequence by con-

catenating rows of pixels together; then applies a sliding win-

dow of fixed size w on this sequence, iteratively moving the

sliding window by p (referred to as the sliding step). This pro-

duces N = (|x|−w+p)/p overlapping pixel segments, each

of length w. Any two consecutive segments overlap by w−p

pixels, and each pixel in x is included in w/p segments.

Hashing each segment. For each segment i (i ∈ [1,N]),
Blacklight applies a secure one-way hash function (e.g.,

SHA-3 combined with a random salt value chosen by the de-

fender) and produces a hash value hi. This creates a full hash

set Hx = (h1,h2, ...,hN) for query x, with N hash entries. For

example, for CIFAR10 (|x|= 32×32×3= 3072), N = 3053

when w = 20, p = 1. An illustration of this sliding window

hashing scheme is shown in Figure 5.

Selecting a subset of hashes as the fingerprint. From

x’s full hash set Hx, Blacklight selects the top S hash values

(sorted by numerical order) as its probabilistic fingerprint,

denoted as S(Hx). Since the output distribution of the one-

way hash is random, choosing the top S hash values by nu-

merical order serves as an efficient downsampling algorithm

that is deterministic5 to the defender but unpredictable to an

adversary (since predicting the top S hash values requires pre-

dicting the full hash set).

The use of probabilistic fingerprinting puts a hard limit

on the overhead of fingerprint storage and comparison, while

5Deterministic means that the downsampled hash set holds the same

property of the full hash set: highly similar (quantized) queries will have

highly similar fingerprints. We also verified this empirically (details in our

extended version [42]).

preserving the high similarity among attack queries. Figure 6

shows a sample measurement on query similarity, for the

eight black-box attacks discussed in §2.2. Here we measure,

for each query xi in an attack sequence, the maximum num-

ber of matching hashes between xi’s fingerprint and any of

its prior queries in the same sequence. For reference, we also

compute the number of matching hashes among benign im-

ages. We see that many attack queries display fingerprints

highly similar to at least one prior query in the same se-

quence, while benign queries share minimal overlap in finger-

prints. Thus Blacklight can quickly detect black-box attacks

after seeing only a small number of queries.

6.3 Comparing and Matching Fingerprints

Upon receiving a new query x, Blacklight computes its fin-

gerprint S(Hx) and compares it to all prior fingerprints stored

in the database. If any stored fingerprint shares more than T

hash entries with S(Hx), then x is flagged as an attack image.

Here, the value of T can be configured to meet the desired

false positive rate. Later in §7, we analytically show that by

properly configuring T and S, we can achieve accurate attack

detection at a low false positive rate.

Computing the maximum overlap between the fingerprint

of a query and n stored fingerprints is non-trivial. A simple

algorithm would incur computation cost of O(n). We use a

better algorithm which stores a query x’s fingerprint into a

hashmap using each of its hash entry as a key. The maxi-

mum overlap with all n queries can be found by retrieving

all queries associated with each key in x’s fingerprints, and

counting the max frequency of any query in that set. An ef-

ficient implementation can produce average runtime that is

a constant independent of n. We leave the design and analy-

sis of an efficient hashset matching algorithm to future work.

We present detailed performance overheads in §8.6.

6.4 Mitigating Attacks after Detection

Detecting the presence of a query-based black-box attack is

just a first step in protecting DNN models. A persistent at-

tacker can simply switch accounts and/or IP addresses and

continue with additional queries. Here, we discuss options

for mitigation after an attack is detected.

Ban accounts. As a response, banning an account or block-

ing an IP address is not ideal. First, it means each false pos-

itive incurs a high penalty, which might be undesirable in



 0#
 o

f 
a

tt
a

c
k
 q

u
e

ri
e

s
 

 g
e

t 
a

n
s
w

e
re

d

Time Attack never succeeds

PRADA

SD

Blacklight

 322
# of queries needed for attack to succeed

Attack query detected and rejected

Figure 7: By detecting/rejecting most of attack queries (re-

gardless of account usage), Blacklight effectively resists per-

sist attackers, which existing defenses fail to address.

some application settings. Second, this does little to deter re-

source rich attackers, who can continue the attack using Sybil

accounts, which are difficult to eradicate in practice.

Return misguided outputs. We also consider a more elab-

orate scheme where the defender intentionally misleads the

attacker by returning carefully biased query outputs, perhaps

towards secondary goals like identifying the attacker. This

approach faces additional challenges. First, crafting biased

responses requires significantly more computation and state-

keeping at the defender. Second, the defender must be careful

to avoid returning valid responses to actual attack queries.

Reject all detected queries. Ultimately we chose a sim-

ple strategy: reject all detected attack queries. This mitiga-

tion is effective in preventing attacks IFF the ratio of attack

queries detected is high. If most attack queries are rejected,

the attack sequence takes a very long time to converge and

succeed. The benefit of this approach is that it does not rely

on detecting or reducing Sybil accounts, and false positives

have minimal impact on benign users.

In §8, we evaluate the impact of mitigation on persistent

attackers who continue to submit attack queries after query

rejection. Figure 7 provides a preview in terms of the # of at-

tack queries got answered under Blacklight, using the persis-

tent attack trace of Figure 2. Blacklight rejects almost all the

attack queries, preventing the attack from making progress.

7 Formal Analysis

We formally examine Blacklight by modeling the process

of probabilistic fingerprinting. We derive analytical bounds

on Q(∆), the probability of Blacklight flagging a query

pair (x,y) as attacks, as a function of the full hash differ-

ence between the two, ∆ = diff(Hx,Hy). We then estimate

Blacklight’s false positive rate and attack detection rate by

Q(∆benign) and Q(∆attack). Here ∆benign is the minimum full

hash difference between benign queries and ∆attack is the

maximum full hash difference between attack queries. Our

key results are: (i) Q(∆) decays fast with ∆, (ii) Black-

light can detect attacks at a low false positive rate, i.e.,

Q(∆attack) → 1, Q(∆benign) → 0, if ∆benign >> ∆attack, (iii)

the bound on Q(∆) can guide the selection of Blacklight’s

configuration parameters (w, p, q, S and T). We leave the

detailed analysis and proof to the extended version [42].

8 Experimental Evaluation

Using four different image classification tasks (and datasets),

we empirically evaluate Blacklight against eight SOTA black-

box attacks. Our experiments seek to understand 1) the effec-

tiveness of Blacklight in both attack detection and mitigation;

2) the false positive rate under realistic settings; 3) impact of

Blacklight configuration; 4) Blacklight’s storage and compu-

tation cost; 5) applying Blacklight to other domain.

8.1 Experimental Setup

We apply Blacklight to protect DNN models developed for

image classification. Our experiments cover a wide range

of input size/content and model architectures, allowing us to

evaluate Blacklight under a diverse set of conditions. We in-

clude the detailed model architectures and training configu-

rations, attack parameters and distance metrics, and Black-

light’s parameter settings in the extended version [42].

Image Classification Tasks. We consider four represen-

tative tasks: MNIST [39], GTSRB [66], CIFAR10 [36] and

ImageNet [60]. We summarize in Appendix §C these tasks

and their associated models in Table 9.

Attack Configurations. We implement and run the eight

black-box attacks list in Table 1 against each of the above

four classification models. For MNIST, GTSRB and CIFAR10,

we randomly select 1000 images from their test datasets and

use each as the source image of the attack (i.e. x0). For

ImageNet, we randomly select 500 source images (due to its

higher computation cost). We run each attack until it termi-

nates (i.e., successfully generating an adversarial example)

or reaches 100K queries, whichever occurs first.

When configuring each attack, we follow its original paper

and use the same Lp distance metric (L2 or L∞) stated in the

paper. Since L2 distance depends on model input size, we use

the normalized L2 distance

√

1
|x| ∑

|x|
i=0(xi− x′i)

2.

We set the perturbation budget ε such that most attacks

succeed in absence of defenses. For reference, the standard

ε for white-box attacks is 0.03 for L∞ and <0.03 for nor-

malized L2 [12]. Thus black-box attacks should use a larger

budget because they are naturally harder to succeed – our

experiments on the eight SOTA black-box attacks confirm

that a budget of 0.03 leads to significant attack failures. Thus

we increase ε=0.05 for both L∞ and normalized L2 to allow

most attacks to succeed. The only exceptions are L∞ attacks

against MNIST since ε=0.1 is necessary for them to succeed.

Blacklight Configuration. To demonstrate the generality

of Blacklight, we set these parameters to be the same default

values for all four tasks, rather than “optimizing” them per

task. The only exception is w – our default value is 20, but we

increase it to 50 for MNIST (due to its large black background)

and ImageNet (due to its large image size).

We choose these values following our formal analysis. In

particular, we choose T = S/2 = 25 by modeling how T af-



Task Attack
w. Detection w. Mitigation w/o Blacklight

Attack

detect %

Detection

coverage

Avg queries

to detection

Attack

success

Attack

success

Avg # attack

queries

MNIST

NES - QL 100% 99.5% 2 0% 45% 66540

NES - LO 100% 99.0% 2 0% 1% 95973

Boundary 100% 64.2% 18 0% 21% 85467

ECO 100% 99.9% 2 0% 43% 52780

HSJA 100% 98.1% 6 0% 59% 9924

QEBA 100% 98.4% 8 0% 92% 12141

SurFree 100% 97.9% 7 0% 84% 10034

Policy-Driven 100% 99.0% 8 0% 74% 9538

GTSRB

NES - QL 100% 98.5% 2 0% 66% 48429

NES - LO 100% 98.0% 3 0% 17% 83823

Boundary 100% 64.3% 22 0% 37% 76643

ECO 100% 100.0% 2 0% 80% 27782

HSJA 100% 98.2% 5 0% 95% 10392

QEBA 100% 99.5% 8 0% 99% 9832

SurFree 100% 98.3% 8 0% 98% 9192

Policy-Driven 100% 98.1% 5 0% 100% 13021

CIFAR10

NES - QL 100% 98.3% 2 0% 100% 12621

NES - LO 100% 98.7% 2 0% 89% 67126

Boundary 100% 64.4% 25 0% 95% 6082

ECO 100% 99.4% 2 0% 89% 16887

HSJA 100% 97.1% 7 0% 100% 1205

QEBA 100% 96.9% 6 0% 99% 1009

SurFree 100% 96.8% 8 0% 100% 1396

Policy-Driven 100% 97.3% 7 0% 100% 1198

ImageNet

NES - QL 100% 99.4% 2 0% 99% 11201

NES - LO 100% 98.2% 2 0% 20% 63492

Boundary 100% 95.1% 42 0% 74% 67356

ECO 100% 99.6% 2 0% 93% 11304

HSJA 100% 98.7% 7 0% 99% 12402

QEBA 100% 98.3% 6 0% 100% 10293

SurFree 100% 97.6% 7 0% 100% 8783

Policy-Driven 100% 99.1% 8 0% 100% 10368

Table 2: Blacklight’s detection and mitigation results. In the last two columns,

we included attack performance in absence of Blacklight: attack success rate

and average attack queries required to complete an attack.

0

0.01

0.1

1

10

100

 0  10  20  30  40  50

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

 (
%

)

Match Threshold T

MNIST
GTSRB

CIFAR-10
IMAGENET

Figure 8: Blacklight’s false positive rate when

fixing S = 50 and varying T.

Label # of Filtered FPR Label # of Filtered FPR

balloon 953 0.07% packet 1158 0.21%

boathouse 1572 0.73% peacock 556 0.68%

daisy 656 0.10% pier 309 0.07%

fly 188 0.03% rifle 905 0.48%

geyser 896 0.11% snail 350 1.01%

hay 1192 0.79% swing 510 0.48%

knot 817 0.14% teapot 1715 0.14%

menu 1232 0.37% tiger cat 1315 0.28%

mortar 1229 0.38% toaster 3298 0.37%

nail 1696 0.83% vault 182 0.04%

Table 3: Blacklight’s false positives on benign

images crawled from Flickr. “# of Filtered” is

# of images that are duplicated and have the

same hash value with prior queries; “FPR” is

the false positive rate per label. For each la-

bel, we run Blacklight on 80,000 Flickr images

(crawled via this label).

fects false positive and detection coverage. Figure 8 shows

the measured false positive rates when varying T, confirm-

ing that T=25 achieves less than 0.1% false positive for all

four tasks. In §8.5, we further explore the impact of parame-

ter configuration by varying w, p, q and S.

Evaluation Metrics. We use the following metrics to quan-

tify the effectiveness and cost of Blacklight.

• False positive rate: % of benign queries detected as attack.

• Attack detection rate: % of black-box attacks detected

before the attack completes.

• Detection coverage: % of queries in an attack’s query se-

quence identified as attack queries.

• Avg # of queries to detection: Average # of attack queries

accepted (thus answered) before detecting an attack query.

• Attack success rate w. mitigation: Success rate of a per-

sistent attack when all detected attack queries are rejected.

• Detection overhead: Run-time latency and storage costs.

8.2 Attack Detection and Mitigation

We evaluate Blacklight’s detection rate by implementing and

performing each of the eight black-box attacks against each

classification model. For each attack and task combination,

we run 1000 instances of the attack (500 for ImageNet).

Each attack instance selects a random image from the test

dataset as source image of the attack (x0), and a random in-

correct label as the misclassification target label.

The results for all attacks are listed in Table 2. As refer-

ence, the last two columns report the performance of these

attacks without the Blacklight defense, in terms of attack

success rate and the speed of convergence (# of queries

before successfully producing an adversarial example). We

see that recent attacks, especially HSJA, QEBA, SurFree,

Policy-Driven, are highly successful in absence of Blacklight.

Boundary and NES-LO take the longest time to converge.

Some attack instances do fail to converge even after gen-

erating 100k queries (e.g., less than 50% of NES-LO com-

plete in 100K queries for MNIST, GTSRB and ImageNet).

Most of them remain unsuccessful even when increasing the

query bound to 300k. Overall, a successful attack takes sev-

eral thousands to tens of thousands of queries to complete.

Next, we summarize key results on Blacklight’s attack de-

tection (as shown by column 3-5 in Table 2). We see that the

attack detection rate remains 100% for all attack instances,

indicating that Blacklight detects all attacks on all models

in progress. The detection coverage is also extremely high

– Blacklight detects more than 96% of all attack queries,

except on the Boundary attack. Another key observation is

that Blacklight detects a new attack instance very quickly,

often after a handful of 2–8 queries (again, more queries

required for Boundary because it converges slower). In all

cases, Blacklight detects an attack in less than 1% of the av-



erage number of queries required to complete the attack.

Blacklight detects Boundary slower than others. This is

because Boundary advances slower in shrinking perturba-

tion towards the Lp ball of the target, thus Blacklight detects

them at a “later” stage with 100% detection rate. The three

improved versions of Boundary (HSJA, QEBA, Policy) con-

verge faster, thus Blacklight detects them faster. To further

evaluate the slower Boundary attack, we run the attack for 1

million queries. We find Blacklight continues to detect (and

reject) attack queries in this longer sequence, leaving the at-

tacker with 0% success (for all four tasks). The detailed re-

sults are listed in Table 10 in Appendix.

Finally, column 6 in Table 2 reports the attack success rate

when Blacklight rejects queries identified as attack queries.

We see that none (0%) of persistent attackers manage to com-

plete their attack within 100K queries. Blacklight’s mitiga-

tion is highly effective because it is able to detect nearly all

attack queries. Rejecting these queries prevents the attacker

from making forward progress in probing model classifica-

tion boundaries. This confirms that a high detection coverage

is critical to defend against query-based black-box attacks.

Key Takeaways. Our results against eight SOTA black-

box attacks show that Blacklight detects all attacks on all

models, detects the overwhelming majority of queries in the

attack sequence, and detects the attack quickly (usually in

less than 8 queries, with the exception of the slow converg-

ing Boundary attack). Furthermore, by rejecting all detected

attack queries, Blacklight’s mitigation module ensures no at-

tacks can complete (at least in 100K queries) for all our tested

attacks and target DNN models.

Comparison to Existing Defenses. As reference, we show

the performance of SD and PRADA in Table 8, using the

same attack experiments described above. As discussed in

§4, SD and PRADA are not designed to stop persistent attack-

ers who switch account to continue attack. Results in Table 8

confirm this and their low detection coverage (0.8%-2.1%).

8.3 Detecting Universal Patch Attacks

We evaluate Blacklight against the only known query-based

universal patch attack, Sparse-RS [20]. Table 11 in Appendix

shows that Blacklight is highly effective in detecting Sparse-

RS (100% detection success rate and > 97.6% detection cov-

erage). Since query-based universal patch attacks are emerg-

ing, additional work is required to thoroughly evaluate the

robustness of Blacklight against them.

8.4 False Positives in Real World Settings

Since Blacklight relies on a similarity detection algorithm

to detect attacks, one might wonder if duplicates or near-

duplicates of images will trigger false positives. Figure 8 re-

ports its false positives between distinctive inputs. But what

about “naturally” similar images, such as different versions

of the same image, or closeby frames of the same video?

We begin with a simple test to confirm that naturally occur-

ring false positives are very low in large image repositories

like ImageNet. We turn off database resets, randomly sample

1 million images from ImageNet training data, send them as

queries to Blacklight, and observe a very low false positive

rate of 0.37%.

False Positives in Similar Images. Next, we look at sim-

ilar images of the same objects, e.g. inputs that should clas-

sify to the same labels. We crawl a large number of public

real world images from Flickr [1] using keyword search on

their public API. We pick 20 random labels from ImageNet,

and use each as a search keyword to crawl 80,000 images

for that label. We filter out images that are perfectly identical

at the pixel level (we found an average of 1036± 696 dupli-

cate images per label). We then take each label, and run our

80,000 images as queries to Blacklight. Even across Flickr

images labeled with the same keyword, Blacklight produces

a very low false positive rate of 0.37%±0.29 over 20 labels.

Detailed results for all labels are shown in Table 3.

False Positives in Video Frames. Finally, we consider

the scenario where the system might receive benign queries

that are highly similar by nature, e.g. image stills taken from

video frames. We explore how Blacklight responds under

such scenarios by testing it for false positives on the YouTube

Faces dataset [74]. YouTube Faces is a collection of 3,425

videos of 1,595 different people, designed for studying un-

constrained facial recognition. We use common image ex-

traction techniques [72] to extract 587,137 video frame im-

ages from videos for 1,283 celebrities. Of these, we filter out

33,227 images that are pixel-level identical to other images,

and send the remaining video frames to Blacklight. The re-

sult is a false positive rate of 1.74%. Even if Blacklight takes

over half million queries per reset cycle for the highly similar

queries, the false positive rate is still very low.

8.5 Impact of Parameter Configuration

We leverage our formal analysis6 of Blacklight to configure

its five system parameters: w, p, q, S, and T. Earlier in Fig-

ure 8 we show empirically how Blacklight’s false positive

rate varies with T and verify our strategy on configuring T.

In the following, we study the impact of the other four pa-

rameters by testing Blacklight against the same set of attacks

while varying each of these parameters. We report the false

positive rate and detection coverage since the attack detec-

tion rate is always 100%. The detailed results are listed in

Figure 10 in Appendix.

We summarize the key findings below. First, we confirm

that q is a critical parameter for Blacklight – the detection

coverage increases quickly as q goes from 1 (no quantiza-

tion) to 50 (the default value) and stabilizes after that (except

for Boundary). When q approaches 100, we start to see visi-

ble increase in false positives (>0.1%). Second, as expected,

6Details in our extended version [42]
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Figure 9: Blacklight’s runtime latency vs. n. Note the log Y

axis. We include latency of SD and PRADA for reference.

the sliding window size w is negatively correlated to false

positive rate and detection coverage, while the sliding step p

has little impact (note that p < w). Thus Blacklight should

select w as a small value to meet the desired false positive

rate. Finally, as expected S should be small to reduce com-

plexity but not too small (e.g.,<20) to introduce visible false

positives. Overall, these results confirm our proposed theory-

guided principle for choosing Blacklight’s parameters.

8.6 Overhead of Blacklight

Storage. Blacklight requires a database to store finger-

prints of prior queries. Our probabilistic fingerprints are ex-

tremely small. Across all of our experiments, a fingerprint

is ≤ 32 ·S bytes and 1.6KB for the default configuration. A

database of 1 million queries only requires 2GB storage, a

“negligible” value for modern servers.

Runtime. Blacklight’s per-query runtime includes latency

to generate the fingerprint from a query and latency to lookup

the fingerprint in the query database. The former depends on

the image size and the parameters (w, p) and the latter de-

pends on the size of query database n. We configure Black-

light to its default configuration and explore the impact of

sliding step p (i.e., increasing p from 1 to 10 or 25 to speed

up hash computation) and the query database size n. We run

Blacklight on an Intel i7 desktop server with 64 GB mem-

ory, and report the per-query runtime for two types of query

images (32×32,CIFAR10) and (224×224,ImageNet) in Fig-

ure 9 as a function of n. The curves remain flat over n, sug-

gesting that Blacklight’s detection cost is independent of n.

More specifically, a CIFAR10 model inference takes 50ms

(on a Nvidia Titan RTX) while Blacklight (on Intel i7) takes

4-8ms (8%-16% over 50ms) for n=1 million queries.

As reference, we compute the runtime of SD and PRADA

on the same Intel i7 server, putting all n queries into a sin-

gle account. They only run on CIFAR10, which we report in

Figure 9. The latencies scale linearly with n (note the log Y

axis). For n=1 million queries, SD and PRADA take 12s and

3.4s per query (24,000% and 6,800% over inference).

Further optimization. Blacklight’s per query latency is

dominated by the sliding window-based hash computation

(99% of total runtime). We further optimize this computa-

tion using GPUs. A modified version of Blacklight running

Attack
w. Detection w. Mitigation w/o Blacklight

Attack

detect %

Detection

coverage

Avg queries

to detection

Attack

success

Attack

success

Avg # attack

queries

TextBugger [43] 100% 99.7% 2 0% 86.0% 537

TextFooler [32] 100% 99.7% 2 0% 100.0% 669

Hard Label [50] 100% 99.9% 2 0% 100.0% 4642

Table 4: Blacklight’s detection and mitigation results on

query-based black-box attacks for text classification.

a Nvidia Titan RTX reduces per-query latency by 20x, to

0.4ms for CIFAR10 and 20ms for ImageNet, almost “negli-

gible” compared to the inference latency.

8.7 Blacklight for Text Classification

Blacklight should in principle extend to other domains where

black-box adversarial attacks produce highly similar queries

in the input space. The domain-specific design task is how

to generate query fingerprints to enable efficient and accu-

rate detection. Below, we show an initial Blacklight design

for text classification, a critical task in NLP. DNN-based

text classification is shown to be vulnerable to query-based

black-box attacks [26, 32, 43, 50], with three SOTA attacks:

TextFooler [32], TextBugger [43] and HardLabel [50].

Fingerprinting a sentence. The input to a text classifier

is a sentence, from which Blacklight produces a fingerprint.

First, we convert the sentence into an array by replacing each

word with its word embedding. We quantize the array, ap-

ply a sliding window to move through the quantized array

and compute hashes, and select the top S hashes as the query

fingerprint. The parameter choices are listed in Table ?? for

IMDB text queries. S and w are smaller since text sentences

create “shorter” arrays, while T remains S/2.

Blacklight performance. We run Blacklight on the three

SOTA attacks on the IMDB dataset [48]. The results in Ta-

ble 4 show that Blacklight achieves 100% detection rate and

>99.7% detection coverage, only takes 2 queries to detect

an attack (and reject the second query). As such, no attack

ever succeeds. For all of these tests, the false positive rate is

only 0.49%. Overall, these results offer clear evidence that

Blacklight can potentially generalize to other domains using

the same probabilistic fingerprint methodology.

9 Adaptive Attacks

A meaningful defense must be robust against adaptive coun-

termeasures from attackers with full knowledge of the de-

fense. We explored a number of customized adaptive at-

tacks against Blacklight, and present the strongest counter-

measures, organized into three groups: 1) reducing query

similarity for attack sequences, 2) reducing queries needed

for successful attacks and 3) leveraging resets in Blacklight.

Given the similarity between the attacks, we only apply coun-

termeasures to 5 of 8 attacks: NES (QL & LO), Boundary,

ECO and HSJA.



Attack

Type

Default T = 25 (FPR = 0.0%) T = 15 (FPR = 0.74%)

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

NES - QL 100% 100% 100% 100% 100% 100% 100% 100%

NES - LO 100% 100% 100% 100% 100% 100% 100% 100%

Boundary 100% 100% 75% 40% 100% 100% 100% 95%

ECO 100% 100% 100% 100% 100% 100% 100% 100%

HSJA 100% 100% 55% 40% 100% 100% 80% 40%

Table 5: Blacklight detection rate for attacks using larger per-

turbation budgets (0.1-0.2) for CIFAR10. Lowering T largely

improves detection when attackers operate on very large per-

turbations, with a small increase in false positives.

9.1 Reducing Query Similarity

With knowledge of how Blacklight works, the straightfor-

ward adaptive attack is to evade detection by reducing sim-

ilarity between attack queries. Below we present four types

of adaptive attacks that add perturbations to attack queries to

reduce similarity between them.

Evasion via Image Transformations. An attacker can try

to evade detection by adding additional perturbations to at-

tack queries, where ideally these perturbations do not dis-

rupt the iterative optimization process, but are significant

enough to make fingerprints of attack queries different. We

explore two types of image transformations: 1) adding Gaus-

sian noise, and 2) applying image augmentation like shift, ro-

tation, zoom and blending. We apply these transformations

to attack queries and send them to Blacklight. We first exam-

ine how these transformations affect the attack in absence of

Blacklight, and confirm that they do introduce different lev-

els of disruptions (none to 100%). On the other hand, for all

the transformed attack sequences that will lead to a success-

ful attack in absence of Blacklight, Blacklight detects all of

them, i.e., 100% attack detection rate. Further details are in

Appendix§ E and Table 12.

Increasing Learning Rates. The attacker can also try to

increase dissimilarity between consecutive queries by tweak-

ing their learning rate parameter. Learning rate controls the

difference between two adjacent queries when estimating

gradients. This does not apply to gradient estimation free at-

tacks (Boundary and ECO). We only explore different learn-

ing rate for NES-QL, NES-LO and HSJA attacks. For two

variants of NES, we gradually increase learning rate more

than 1000 fold. While the attack success rate drops to 0%,

detection success rate remains 100%. For HSJA, we gradu-

ally grow learning rate up to a factor of 106, until changes

in learning rate no longer impact gradient estimation results.

Here, attack success rate steadily drops (eventually to 15%),

but detection remains at 100% throughout.

Increasing Perturbation Budgets. Our evaluation so far

assumes the attacker’s perturbation budget is limited to com-

monly accepted values: 0.05 for both L∞ and normalized L2.

Future attacks might tolerate a higher perturbation budget

in specific settings. Thus, we evaluate Blacklight’s detection

performance against attacks on CIFAR10 with larger pertur-

bation budgets. For all attacks, we incrementally increase the

budget from 0.05 all the way up to 0.2, and measure Black-

light’s attack detection rates for each budget level (running

20 attack instances for each data point). We show that the at-

tack detection rates for NES variants and ECO remain steady

at 100%, but Boundary and HSJA begin to evade detection

when normalized L2 = 0.15 (or L2 = 8.3).

Blacklight can compensate by tuning the fingerprint

matching threshold T. Table 5 shows that by lowering T from

25 to 15, we can dramatically increase detection rates, restor-

ing perfect detection to most attacks (except HSJA at normal-

ized L2 = 0.15/0.2 (L2 = 8.3/11.1) and Boundary at normal-

ized L2 = 0.2 (L2 = 11.1)). This drop in T only increases

false positive rates by 0.74%.

We further validate our results on the other three tasks for

the two fastest converging attacks (ECO and HSJA) and the

results (Table 13) are consistent with CIFAR10. Finally, we

also perform analysis on the L2 distances between benign

images to provide a baseline for reasonable L2 budget for

adversarial attacks in Appendix §E.

Evasion via Guided Transformation. Beyond first or-

der adaptive attacks, we worked hard to design more pow-

erful attacks specifically targeting Blacklight. Assuming a

Blacklight system’s parameters q and w are unknown to an

attacker, the strongest attack we could design is the two-

pronged reverse engineer attack, where an attacker first uses

queries to probe the limits of q and w, and then leverages

those results to optimize a guided transformation attack.

The high-level intuition is that an attacker can optimally

spread out their perturbation budget across the image, if they

understand Blacklight and learned its specific configuration

parameters. As long as there is at least one pixel changed

(after pixel quantization) for some sliding window, hash val-

ues of the window will be changed. Thus, the attacker just

needs to make sure that for each window, at least one pixel

is different from all prior queries after quantization. In this

case, Blacklight’s use of saltQ in eq (2) is crucial to resisting

these guided transformation attacks. Next, we summarize the

attack and results when Blacklight turns saltQ off or on.

(i) Guided transformation (Blacklight’s saltQ off). An at-

tacker begins by estimating quantization step q and using it

to compute quantization boundary B, followed by estimating

value of w. It does this by issuing pairs of queries with a

minimal perturbation based on an initial estimate of q or w,

and observing whether the second query is detected as an at-

tack. This is repeated using binary search until both q and

w are determined. Finally, the attacker computes B from q,

and then the optimal layout of modified pixels to maximize

the number of substring windows affected by the perturba-

tion. The attacker uses this process to modify each query to

evade detection while iteratively optimizing queries to gen-

erate the adversarial example. We implement this attack on

top of the two fastest converging attacks (ECO and HSJA)

and the slowest attack (Boundary). Table 6 shows that the at-

tacker achieves no more than 25% success rate for all tasks.



Task
Blacklight’s saltQ off saltQ on attacker knows (p,q,w), saltQ on

Boundary ECO HSJA Boundary ECO HSJA Boundary ECO HSJA

MNIST 0% 0% 0% 0% 0% 0% 0% 0% 0%

GTSRB 10% 5% 5% 0% 0% 0% 0% 0% 0%

CIFAR10 20% 15% 25% 0% 0% 0% 0% 0% 0%

ImageNet 5% 10% 20% 0% 0% 0% 0% 0% 0%

Table 6: Attack success rate using guided transformations attacks.

Metrics NES AutoZOOM

Attack success % 100% 100%

Attack detect % 100% 100%

Detection coverage 99.1% 98.9%

Avg queries to detection 2 2

Avg # of attack queries 1473 1240

Table 7: Blacklight vs. hybrid batch attacks.

(ii) Guided transformations (Blacklight’s saltQ on). The

defender can overcome the above adversary by making it

harder to extract the quantization boundary. Blacklight does

so by adding a “salt” to the quantization process, i.e., saltQ
in eq. (2). This defeats attempts by the attacker to reverse en-

gineer q and B. Without knowledge of q, an attacker can still

launch a weaker version of the attack, but must overshoot on

perturbation to increase chances of it persisting through the

salted quantization and alter the hashes. We implement such

attack by altering 5, 10, and 15 out of every 20 pixels within

the perturbation budget. When applying this new attack on

top of ECO, HSJA, and Boundary, the attacker still achieves

0% success on all tasks, while Blacklight maintains a high

detection coverage (78%). This confirms the significant ro-

bustness gained by adding the salt.

Guided Transformations when Attacker Knows (q,p,w).
Finally, we consider the strongest guided transformation at-

tack – the attacker knows the exact values of q, p, w and can

better perturb queries to evade detection.

To make a query x evade detection, the attacker must en-

sure that for each window, at least one pixel of x is differ-

ent from all prior queries after quantization. This is because

Blacklight’s one-way hash distribution and the top S hash

choices remain unpredictable to the attacker. Knowing q, p,

w helps the attacker to optimize the pixel perturbation. For

example, now in each window changing a pixel by q or −q

will change the hash despite the use of saltQ. To make x’s

full hashes different from those of all prior attack queries, we

apply a permutation-based pixel selection algorithm to mini-

mize the total perturbation (see Algorithm1 in Appendix).

Even with this strong attack, attackers still have 0% suc-

cess rate after sending 100K queries (see Table 6). These at-

tack queries do bypass Blacklight’s detection, but the attack’s

iteration optimization process never converges to generate

an adversarial example (regardless of the perturbation bud-

get). This is because the perturbation applied to individual

attack queries in order to evade detection is too large to make

the query results useful for attack optimization, i.e., they fail

to capture detailed decision boundaries of the target model.

As such, the iterative optimization process fails to make con-

crete progress but “randomly” wanders around.

Summary. Together, our experiments with guided transfor-

mation attacks show that (1) salted quantization is important

to resist advanced attackers, and (2) under the Blacklight de-

fense, attackers now face two conflicting goals when building

attack queries: evading Blacklight’s detection or advancing

the attack’s iterative optimization process using queries.

9.2 Reducing Number of Attack Queries

Another way to evade Blacklight is to reduce the queries

needed for an attack to succeed. Since Blacklight examines

similarity between a new query and past queries, the fewer

the queries needed, the lower the probability that the attack

query will be detected. We explore two adaptive attacks that

focus on reducing attack queries needed.

Hybrid Black-Box Attacks. Substitute model based pri-

ors can be useful for planning attack queries [19, 29, 33, 67].

For example, adversarial examples generated from a sub-

stitute model can serve as a good starting point to launch

query-based black-box attacks, allowing the attacker to use a

smaller number of queries to complete the attack [67]. We

run two of these hybrid attacks [67] (NES and AutoZOOM)

while using Blacklight to protect the target model. For each

attack, we run 100 attack sequences on CIFAR10 and report

our results in Table 7. We see that the two hybrid attacks do

reduce the number of queries required for complete an attack,

Blacklight still leads to 100% attack detection, 99% of detec-

tion coverage, and detect attack queries after just 2 queries.

Optimal Black-Box Attacks. Since black-box attacks are

continuously evolving in query efficiency, we also evalu-

ate Blacklight against two types of highly efficient attacks

that are possible but do not yet exist. First, we consider ex-

tremely “query-efficient” black-box attacks that require or-

ders of magnitude fewer attack queries than current attacks

by downsampling existing attack sequences. We find that

even when attacks are able to complete in 500, 100, or 50

queries, Blacklight still detects them near perfectly (100%

detection rate for 4 attacks and 89% for Boundary attack).

Second, we imagine a “perfect-gradient” black-box algo-

rithm that is somehow able to perfectly predict gradient func-

tions from the results of its attack queries, as accurately as a

white-box attack. Our results show Blacklight detects 100%

of attacks driven by CW [12], and 81% of attacks driven by

PGD [49]. The details are listed in Table 14, Appendix §E.

9.3 Evasion by Exploiting Reset Window

Finally, to guarantee the efficacy of Blacklight, the defender

would reset the system periodically. Thus, a patient attacker

can leverage the reset feature to evade detection.

Pause and Resume Attacks. Adversaries can try to evade

detection by exploiting the fact that Blacklight periodically



resets its database to remove all fingerprints. They can pause

their attack every time it receives a rejection response, and re-

suming the attack the next time Blacklight resets its database.

We experiment on all five black-box attacks using this strat-

egy against a CIFAR10 model and Blacklight. We run 100 in-

stances of each attack, and show average total queries needed

for each attack to succeed, and the average number of reset

cycles that requires in Table 15. If we reset Blacklight every

24 hours, the fastest successful attacker would complete an

attack (using HSJA) in 1092 days or roughly 3 years. While

this strategy does allow for a successful attack, the time cost

to perform this attack makes it highly impractical.

10 Conclusion and Limitations

Blacklight protects DNN models against query-based black-

box attacks, using a probabilistic fingerprint to detect highly

similar queries generated by attack optimization. Blacklight

achieves near-perfect detection against eight SOTA attacks

with negligible false positives, resists persistent attackers,

and is robust to a range of adaptive and even idealized coun-

termeasures. We also demonstrated that Blacklight can suc-

cessfully generalize to some text classification tasks.

Blacklight faces two limitations that demand further re-

search. First, it is unable to defend against substitute model

(SM) attacks, but can be combined with SM defenses to

launch a more complete defense against both types of black-

box attacks (see Appendix §A for initial results). Second,

Blacklight relies on the fact that existing query-based black-

box attacks all produce highly similar queries during their

iterative optimization process, a phenomenon rarely seen in

benign queries. It is not future-proof, i.e. a (future) attack

breaking this assumption would evade Blacklight.
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Appendix

A Defense against Substitute Model Attacks

Blacklight is designed to detect query based black-box at-

tacks. It cannot defend against attacks transferred from a sub-

stitute model. As we discussed in §2, substitute model at-

tacks can be effectively stalled by an existing defense called

ensemble adversarial training (EAT) [68]. EAT adversari-

ally trains an ensemble of models with different architec-

tures [49], which are shown to be robust against the substitute

model attack. Hence, to defend against all types of black-box

attacks, the defender can combine Blacklight with EAT to

build a hybrid defense system.

We build and evaluate a hybrid Blacklight and EAT de-

fense on the cifar task. Specifically, we build an ensemble

model with three different architectures (6-layer CNN, 8-

layer CNN, ResNet-20) and adversarially train the network

using PGD attacks as suggested by [49]. We use the same

Blacklight configuration as before.

We perform both substitute model based attacks and query

based black-box attacks against the above ensemble model

defended by Blacklight. For the substitute model attack we

run the state-of-art attack proposed by Papernot et al [56],

and for the query-based attacks we run the same five black-

box attacks. The result shows that the hybrid defense works

well and the two defenses do not interfere with each other.

The substitute model attack achieves 0% success (thanks

to EAT), and Blacklight achieves the same accurate attack

query detection as reported before. Thus, we conclude that

Blacklight, when combined with EAT, can defend against to-

day’s black-box attacks.

Attack
Detection

coverage

Avg queries

to detect

Attack success

w. mitigation

Attack success

w/o mitigation

NES - QL 1.8% / 0.8% 52 / 112 97% / 97% 97%

NES - LO 1.3% / 0.9% 52 / 111 85% / 85% 85%

Boundary 1.0% / 0.8% 54 / 115 86% / 86% 86%

ECO 1.8% / 0.9% 53 / 112 88% / 88% 88%

HSJA 1.7% / 0.9% 52 / 111 100% / 100% 100%

QEBA 1.6% / 0.9% 52 / 111 100% / 100% 100%

SurFree 1.9% / 0.9% 52 / 111 100% / 100% 100%

Policy-Driven 2.1% / 0.9% 53 / 111 98% / 98% 98%

Table 8: Detection performance of Stateful Detection [17]

and PRADA [34] when attackers change their accounts af-

ter detected and disabled on CIFAR10, in terms of attack de-

tection and mitigation. The result is presented as s“Stateful

Detection / PRADA”.

B Additional Results for §4

Table 8 lists the detection performance of SD and PRADA,

when attackers switch to a new account to continue the attack

after the current account gets banned.

C Experimental Configurations

Table 9 summarizes the four image classification tasks used

in our experiments. More details on associated models, at-

tack configurations and Blacklight’s configurations can be

found in our extended version [42].

D Additional Results for §8

Boundary attacks with 1 million queries. Table 10 shows

that blacklight still has 100% attack detect rates for bound-

ary attacks with 1 million query limits. Furthermore, we find

that the detection coverages are even higher for attacks with 1

million query limits than those with 100K query limits. This

validates our hypothesis that Blacklight detects boundary at-

tacks at later stage because boundary attack advances slower

in converging to the successful adversarial examples. Finally,

boundary attacks still have 0% attack success rate with Black-

light mitigation even with 1 million queries.

Blacklight’s performance on universal patch attack. Ta-

ble 11 lists the detailed results for Blacklight’s detection and

mitigation results on Sparse-RS universal patch attack.

Impacts for Blacklight parameter configuration. We

show the experimental results for the impact of Blacklight

parameters (Quantization step (q), # of hashes per fingerprint

(S), Sliding window size (w), and Sliding step (p)) by plot-

ting the Detection Coverage (%) and False Positive Rate (%)

with different parameter settings in Figure 10.

E Additional Results for §9

Evasion via Image Transformations. We report the de-

tails for our experiments against Image Transformations here.

After applying these transformations to attack queries, we re-

port the attack success rate (without the Blacklight defense)

and Blacklight’s attack detection rate, on the CIFAR10 task.



Task Dataset # Classes
Training

data size

Test data

size
Input size Model architecture Model accuracy

Digit Recognition (MNIST) MNIST 10 60,000 10,000 (28, 28, 1) 6 Conv + 3 Dense 99.36%

Traffic Sign Recognition (GTSRB) GTSRB 43 39,209 12,630 (48, 48, 3) 6 Conv + 3 Dense 97.59%

Object Recognition - Small (CIFAR10) CIFAR-10 10 50,000 10,000 (32, 32, 3) ResNet20 91.48%

Object Recognition - Large (ImageNet) ImageNet 1000 1,281,167 50,000 (224, 224, 3) ResNet152 73.05%

Table 9: Overview of image classification tasks with their associated datasets and models.
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Figure 10: Detection Coverage (%) and False Positive Rate (%) with different settings on Blacklight parameters: Quantization

step (q), # of hashes per fingerprint (S), Sliding window size (w), and Sliding step (p).

Task
w. Detection w. Mitigation w/o Blacklight

Attack

detect %

Detection

coverage

Avg queries

to detect

Attack

success

Attack

success

Avg # attack

queries

MNIST 100% 76.3% 16 0% 26% 892350

GTSRB 100% 71.2% 19 0% 40% 902931

CIFAR10 100% 69.7% 27 0% 96% 829124

ImageNet 100% 97.2% 39 0% 79% 738452

Table 10: Blacklight’s detection and mitigation results on

Boundary attack. We stop the boundary attack if it is no suc-

cessful after 1 million attack queries.

Task
w. Detection w. Mitigation w/o Blacklight

Attack

detect %

Detection

coverage

Avg queries

to detect

Attack

success

Attack

success

Avg # attack

queries

MNIST 100% 98.4% 8 0% 32.9% 88021

GTSRB 100% 98.9% 14 0% 10.8% 98386

CIFAR10 100% 97.6% 12 0% 54.7% 87201

ImageNet 100% 98.7% 9 0% 27.7% 92039

Table 11: Blacklight’s detection and mitigation results on

Sparse-RS universal patch attack.

Like before, we report attack detection rate only successful

attacks. For each setting, we run 20 attack instances.

For Gaussian noise based transformations, we vary the

standard deviation (STD) of noise from 0.0001 to 0.05 (with

all query inputs normalized to [0,1]). Results in Table 12

show that as noise levels increase, attack success rates drop

quickly. But at all noise levels tested, Blacklight is able to de-

tect all successful attacks. Intuitively, sufficiently high noise

will disrupt classification of both benign and attack queries,

thus degrading the attack success rate. We see that Blacklight

is generally more robust than the attack’s iterative optimiza-

tion process – Blacklight continues to detect attacks at noise

levels where the noise has long since disrupted the attack.

For image augmentation, we test 4 cases where the at-

Attack

Transformation Gaussian Noise w. Different STD Image Augmentation

0.0001 0.0005 0.005 0.05 Shift Rotate Zoom Comb.

NES - QL
ASR 85% 80% 15% 0% 100% 75% 80% 60%

ADR 100% 100% 100% N/A 100% 100% 100% 100%

NES - LO
ASR 25% 20% 15% 0% 100% 45% 70% 20%

ADR 100% 100% 100% N/A 100% 100% 100% 100%

Boundary
ASR 90% 90% 85% 0% 90% 90% 90% 90%

ADR 100% 100% 100% N/A 100% 100% 100% 100%

ECO
ASR 85% 0% 0% 0% 0% 0% 0% 0%

ADR 100% N/A N/A N/A N/A N/A N/A N/A

HSJA
ASR 95% 20% 5% 0% 0% 5% 10% 15%

ADR 100% 100% 100% N/A N/A 100% 100% 100%

Table 12: Attack success rate (ASR) w/o Blacklight mitiga-

tion and Blacklight attack detection rate (ADR) of success-

ful attacks as attackers add different image transformations.

Column 3-6 report the results for adding Gaussian Noise

with different standard deviation (STD) and Column 7-10 re-

port the results for applying different image transformations

to each attack queries.

tacker shifts each input horizontally/vertically by up to 10%,

rotate by up to 10◦, zoom in by up to 10%, and a combination

of all three. Table 12 shows that while different attacks react

differently to image augmentation techniques (some still pro-

duce successful attacks while others fail completely), Black-

light is able to detect all successful attack sequences under

different transformations.

Increasing Perturbation Budget. To provide a compre-

hensive evaluation on the impact of increasing perturbation

budget on Blacklight, we run experiments on all tasks for

the two fastest converging attacks (ECO and HSJA) with

larger perturbation budgets. Table 13 shows that Blacklight

achieves 100% on all tasks for ECO attacks even with pertur-

bation budget up to 0.2. For HSJA attack, Blacklight can de-



Task
ECO HSJA

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

MNIST 100% 100% 100% 100% 100% 100% 75% 40%

GTSRB 100% 100% 100% 100% 100% 100% 70% 50%

CIFAR10 100% 100% 100% 100% 100% 100% 80% 40%

ImageNet 100% 100% 100% 100% 100% 100% 90% 85%

Table 13: Blacklight detection rate for attacks using larger pertur-

bation budgets for all tasks. We use T = 15 with a small increase in

false positives (0.74%).

Attack Type

N
500 100 50 10

NES - Query Limit 100% 100% 100% 95%

NES - Label Only 100% 100% 100% 31%

Boundary 100% 90% 89% 48%

ECO 100% 100% 100% 100%

HSJA 100% 100% 100% 91%

CW Average N = 6.33, Detection rate = 100%

PGD Average N = 3.13, Detection rate = 81%

Table 14: Blacklight’s performance against near-optimal

“query-efficient” and “perfect-gradient” black-box attacks.

Attack Type Average Reset Cycles Needed Average Total Queries

NES-QL 11471 12695

NES-LO 65837 67099

Boundary 2285 6160

ECO 16590 16591

HSJA 1092 1121

Table 15: Average reset cycles needed for a successful Pause

and Resume attack on CIFAR10. The fastest attack (HSJA)

can succeed in roughly 3 years.

tect 100% of attacks on all tasks when the normalized L2 per-

turbation budgets are no more than 0.1. When the normalized

L2 perturbation budgets get larger, Blacklight’s detection rate

drops gradually. However, we believe this is reasonable since

the normalized L2 budget is too large that even exceeds the

normalized L2 distances between some benign images. De-

tailed analysis is listed in our extended version [42].

Pause and Resume Attacks. Table 15 lists the average

number of reset cycles needed for different attacks. We also

include average total number of queries needed for attacks as

reference.

Guided Transformations knowing (q,p,w). Algorithm 1

lists the algorithm used by the attacker to generate queries.

Optimal Black-Box Attacks. We provide more details

on the optimal black-box attacks. First, to simulate a near-

optimal query-efficient attack, we evenly downsample attack

query sequences from 5 attacks to generate attack sequences

that are a tiny fraction of current sequences. We then test

Blacklight’s detection performance on these subsampled at-

tack sequences. Table 14 shows that even when attacks are

able to complete in 500, 100, or 50 queries, Blacklight still

detects them near perfectly (100% detection for 4 attacks and

89% for Boundary attack). Even when these attacks com-

plete within 10 queries, Blacklight is still highly successful

Algorithm 1 Algorithm for Guided Transformation Attacks

when Attacker Knows (q,p,w)

Parameter: Sliding window size w, quantization step q

Input: Attack query x

Output: Modified attack query x

1: procedure INITIZATION(w, q)

2: # Save all combinations for pixel modification in a

queue.

3: PermList← []
4: for i = 1 to w do

5: # compute all Ci
w combinations for selecting i

pixels from w pixels.

6: pixelCombination = Combination(i, w)

7: # For each pixel selected there are 2 choices

for combinations (+q/− q), which generates 2i ×Ci
w

choices in total.

8: allPixelCombination = Update2ChoicesPerPixel

(pixelCombination)

9: PermList.append(allPixelCombination)

10: end for

11: return PermList

12: end procedure

13: procedure GUIDEDTRANSFORMATION(x)

14: # we pop the first element from the queue, which is

the modification choice with smallest # of pixel changes

in the remaining choices.

15: CurrentPermutation = PermList.pop()

16: Apply the modification for CurrentPermutation to ev-

ery w pixels of x.

17: return x

18: end procedure

at detecting NES-QL, ECO and HSJA.

We note that NES-LO and Boundary attacks have much

lower detection rates than other attacks when only choosing

10 queries from attack sequences. This is because both NES-

LO and Boundary attacks are both boundary attacks that

jump back and forth between two images (original and target

image). Random subsets of 10 out of thousands of queries

are more likely to be variants of the source or target that are

sufficiently different from each other as to avoid detection.

Second, for “perfect-gradient” black-box algorithm, each

iteration of the gradient calculation for an analogous white-

box attack would translate to a single query over the net-

work by the black-box attacker. This idealized black-box

attack uses CW [12] and PGD [49] to generate attack se-

quences against our CIFAR10 model. On average, CW and

PGD converge after only 6.3 and 3.1 queries. Against simu-

lated black-box attacks using these attack queries, Blacklight

detects 100% of attacks driven by CW, and 81% of PGD-

driven attacks.
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