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Abstract

As companies continue to invest heavily in larger, more ac-
curate and more robust deep learning models, they are ex-
ploring approaches to monetize their models while protect-
ing their intellectual property. Model licensing is promising,
but requires a robust tool for owners to claim ownership of
models, i.e. a watermark. Unfortunately, currentdesigns have
not been able to address piracy attacks, where third parties
falsely claim model ownership by embedding their own “pi-
rate watermarks” into an already-watermarked model.

We observe that resistance to piracy attacks is fundamen-
tally at odds with the current use of incremental training to
embed watermarks into models. In this work, we propose
null embedding, a new way to build piracy-resistant water-
marks into DNNs that can only take place at a model’s ini-
tial training. A null embedding takes a bit string (water-
mark value) as input, and builds strong dependencies be-
tween the model’s normal classification accuracy and the
watermark. As a result, attackers cannot remove an embed-
ded watermark via tuning or incremental training, and cannot
add new pirate watermarks to already watermarked models.
We empirically show that our proposed watermarks achieve
piracy resistance and other watermark properties, over a wide
range of tasks and models. Finally, we explore a number
of adaptive counter-measures, and show our watermark re-
mains robust against a variety of model modifications, includ-
ing model fine-tuning, compression, and existing methods to
detect/remove backdoors. Our watermarked models are also
amenable to transfer learning without losing its watermark
properties.

1 Introduction

State-of-the-art deep neural networks (DNNs) today are in-
credibly expensive to train. For example, a new conversa-
tional model from Google Brain includes 2.6 billion parame-
ters, and takes 30 days to train on 2048 TPU cores [2]. Even
“smaller” models like ImageNet require significant training
(128 GPUs for 52 hours) to add robustness properties.

As training costs continue to grow with each generation
of models, providers must explore approaches to monetize
models and recoup their training costs, either through Ma-
chine Learning as a Service (MLaaS) platforms (e.g. [17,32])
that host models, or fee-based licensing of pretrained mod-

els. Both have serious limitations. Hosted models are vul-
nerable to a number of model inversion or inference attacks
(e.g. [8,25,28]), while model licensing requires a robust and
persistent proof of model ownership.

DNN watermarks [4, 26, 33] are designed to address the
need for proof of model ownership. A robust watermark
should provide a persistent and unforgeable link between the
model and its owner or trainer. Such a watermark would re-
quire three properties. First, it needs to provide a strongly ver-
ifiable link between an owner and the watermark (authentica-

tion). Second, a watermark needs to be persistent, so that it
cannot be corrupted, removed or manipulated by an attacker
(persistence). Finally, it should be unforgeable, such that an
attacker cannot add additional watermarks of their own to a
model in order to dispute ownership (piracy-resistance).

Despite a variety of approaches, current proposals have
failed to achieve the critical property of piracy resistance.
Without it, a user of the model can train their own “valid”
watermark into an already watermarked model, effectively
claiming ownership while preserving the model’s classifi-
cation accuracy. Specifically, recent work [30] showed that
regularizer-based watermarking methods [4, 5, 26] were all
vulnerable to piracy attacks. More recent watermark designs
rely on embedding classification artifacts into models [1,33].
Unfortunately, our own experiments show that both tech-
niques can be overcome by successfully embedding pirate
watermarks with moderate training.

But what makes piracy resistance so difficult to achieve?
The answer is that neural networks are designed to accept in-
cremental training and fine-tuning. DNNs can be fine-tuned
with existing training data, trained to learn or unlearn specific
classification patterns, or “retargeted” to classify input to new
labels via transfer learning. In fact, existing designs of DNN
watermarks rely on this incremental training property to em-
bed themselves into models. Thus it is unsurprising that with
additional effort, an attacker can use the same mechanism to
embed more watermarks into an already watermarked model.

In this work, we propose null embedding, a new approach
for embedding piracy-resistant watermarks into deep neural
networks. Null embedding does not rely on incremental train-
ing. Instead, it can only be trained into a model at time of ini-
tial model training. Formally speaking, a null embedding (pa-
rameterized by a bit string) imposes an additional constraint
on the optimization process used to train a model’s normal
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classification behavior, i.e. the classification rules used to
classify normal input. As this constraint is imposed at time of
initial model training, it inexorably builds strong dependen-
cies between normal classification accuracy and the given
null embedding parameter. After a model is trained with a
given null embedding, further (incremental) training to add a
new null embedding fails, because it generates conflicts with
the existing null embedding and destroys the model’s normal
classification accuracy.

Based on the new null-embedding technique, we propose
a strong watermark system that integrates public key cryp-
tography and verifiable signatures into a bit-string embed-
ded as a watermark in a DNN model. The embedded bit
string inside a watermarked model is easily identified and se-
curely associated with the model owner. The presence of the
watermark does not affect the model’s normal classification
accuracy. More importantly, attempts to train a different, pi-
rate watermark into a watermarked model would destroy the
model’s value, i.e. its ability to classify normal inputs. This
deters any piracy attacks against watermarked models.

Our exploration of the null-embedding watermark pro-
duces several key findings, which we summarize below:

• We validate the null-embedding technique and associated
watermark on a variety of model tasks and architectures.
We show that piracy attacks actually destroy model clas-
sification properties, and are no better than training the
model from scratch, regardless of computation effort (§5.1,
§7.2). We also confirm that we achieve all basic watermark
properties (§7.3).

• We evaluate against several countermeasures. We show
watermarks cannot be removed by modifications such as
model fine-tuning, neuron pruning, model compression, or
backdoor detection methods. They disrupt the model’s nor-
mal classification before they begin to have any impact on
the watermark (§8.1, §8.2). We discuss model extraction
attacks and why they are impractical due to requirements
on in-distribution training data (§8.3).

• We show that watermarked models are amenable to trans-
fer learning: models can learn classification of new labels
without losing its watermark properties (§8.4).

Overall, our empirical results show that null embeddings
show promise as a way to embed watermarks that resist
piracy attacks. We discuss limitations and future work in §9.

2 Related Work

The goal of watermarking is to add an unobtrusive and
tamper-resistant signal to the host data, such that it can be
reliably recovered from the host data using a recovery key.
As background, we now summarize existing works on digi-
tal watermarks, which have been well studied for multimedia
data and recently explored for deep neural networks.

2.1 Digital Watermarks for Multimedia Data

Watermarking multimedia data has been widely studied in
the literature (e.g. a survey [11]). A watermark can be added
to images by embedding a low-amplitude, pseudorandom sig-
nal on top of the host image. To minimize the impact on the
host, one can add it to the least significant bits of grayscale
images [27], or leverage various types of statistical distribu-
tions and transformations of the image (e.g. [3, 13, 23]). For
video, a watermark can take the form of imperceptible per-
turbations of wavelet coefficients for each video frame [21]
or employ other perception measures to make it invisible to
humans [31]. Finally, watermarks can be injected into audio
by modifying its Fourier coefficients [3, 22, 24].

2.2 Digital Watermarks for DNNs

Recent works have examined the feasibility of injecting wa-
termarks into DNN models. They can be divided into two
groups based on the embedding methodology.
Weights-based Watermarks. The first group [4,5,26] em-
beds watermarks directly onto model weights, by adding a
regularizer containing a statistical bias during training. But
anyone knowing the methodology can extract and remove
the injected watermark without knowing the secret used to
inject it. For example, a recent attack shows that these water-
marks can be detected and removed by overwriting the statis-
tical bias [30]. Another design [7] enables “ownership verifi-
cation” by adding special “passport” layers into the model,
such that the model performs poorly when passport layer
weights are not present. This design relies on the secrecy of
passport layer weights to prove model ownership. Yet the pa-
per’s own results show attackers can reverse engineer a set of
effective passport layer weights. Since there is no secure link
between these weights and the owner, attackers can reverse
engineer a set of valid weights and claim ownership.
Classification-based Watermarks. The second approach
embeds watermarks in model classification results. Recent
work [33] injects watermarks using the backdoor attack
method, where applying a specific “trigger” pattern (defined
by the watermark) to any input will produce a model mis-
classification to a specific target label. However, backdoor-
based watermarks can be removed using existing backdoor
defenses (e.g. [29]), even without knowing the trigger. Fur-
thermore, this proposal provides no verifiable link between
the trigger and the identity of the model owner. Any party
who discovers the backdoor trigger in the model can claim
they inserted it, resulting in a dispute of ownership.

Another work [1] uses a slightly different approach. It
trains watermarks as a set of classification rules associated
with a set of self-engineered, abstract images only known to
the model owner. Before embedding this (secret) set of im-
ages/labels into the model, the owner creates a set of com-
mitments over the image/label pairs. By selectively revealing
these commitments and showing that they are present in the
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model, the owner proves their ownership.

3 Problem Context and Threat Model

To provide context for our later discussion, we now describe
the problem setting and our threat model.
Ownership Watermark. Our goal is to design a robust
ownership watermark, which proves with high probability
that a specific watermarked DNN model was created by a
particular owner O. Consider the following scenario. O plans
to train a DNN model Fθ for a specific task, leveraging sig-
nificant resources to do so (e.g. training data and computa-
tional hardware). O wishes to license or otherwise share this
valuable model with others, either directly or through trans-
fer learning, while maintaining ownership over the intellec-
tual property that is the model. If ownership of the model
ever comes into question, O must prove that they and only
they could have created Fθ. To prove their ownership of Fθ

on demand, O embeds watermark W into the model simulta-
neously when training the model. This watermark needs to
be robust against attacks by a malicious adversary Adv.
Threat Model. At a high level, the adversary Adv wants to
stake its own ownership claims on Fθ or at least destroy O’s
claims. We summarize possible adversary goals as follows:

• Corruption: Adv corrupts or removes the watermark W,
making it unrecognizable and removing O’s ownership
claim.

• Piracy: Adv adds its own watermark WA so it can assert
its ownership claim alongside O’s.

• Takeover: A stronger version of piracy is that Adv re-
places W with its own watermark WA, in order to com-
pletely take over ownership claims of the model.

We make two more assumptions about the adversary. First,
Adv is not willing to sacrifice model functionality, i.e. the at-
tack fails if it dramatically lowers the model’s normal clas-
sification accuracy. Second, Adv has limited training data
and finite computational resources. If Adv has as much or
even more training data as O, then it would be easier to
train its own model from scratch, making ownership ques-
tions over Fθ irrelevant. We assume finite resources, because
at some point, trying to compromise the watermark will be
more costly in terms of computational resources and time
than training a model from scratch. Our goal is to make com-
promising a watermark sufficiently difficult, such that it is
more cost-efficient for an adversary to pay reasonable licens-
ing costs instead.

4 Understanding Piracy Resistance

Although piracy resistance is a critical requirement for DNN
watermark, all existing works are vulnerable to piracy attacks.
In this section, we demonstrate this vulnerability, discuss
why existing designs fail to achieve piracy resistance, and
propose an alternative design.

4.1 The Need for Piracy Resistance

In an ownership piracy attack, an attacker attempts to embed
his watermark into a model that is already watermarked. If
the attacker can successfully embed her watermark into the
watermarked model, the owner’s watermark can no longer
prove their (unique) ownership. That is, the ambiguity intro-
duced by the presence of multiple watermarks invalidates the
true owner’s claim of ownership. To be effective, a DNN wa-
termark must resist ownership piracy attacks.

4.2 Existing Works are Not Piracy Resistant

We show that, unfortunately, all existing DNN watermarking
schemes are vulnerable to ownership piracy attacks.
Piracy Resistance of Weights-based Watermarks. Re-
cent work [30] already proves that regularizer-based water-
marking methods [4,5,26] are vulnerable to ownership piracy
attacks, i.e. an attacker can inject new watermarks into a
watermarked model without compromising the model’s nor-
mal classification performance. Furthermore, the injection of
a new watermark will largely degrade or even remove the
original watermark. Another watermark design in this cat-
egory [7] also fails to achieve piracy resistance because it
cannot securely link an embedded watermark to the model
owner. An attacker can demonstrate the existence of a pirate
watermark without embedding it into the model.
Piracy Resistance of Classification-based Watermarks.

In the following section, we show empirically that existing
works [1, 33] are vulnerable to piracy attacks. We follow the
original papers to re-implement the proposed watermarking
schemes on four classification tasks (Digit, Face, Traffic,
and Object). Details of these tasks are listed in §7.1. Addi-
tional details concerning the DNN model architectures, train-
ing parameters, and watermark triggers used in our experi-
ments can be found in the Appendix A.2.

To implement piracy attacks, we assume a strong attacker
who has access to 5,000 original training images and the wa-
termarked model. The goal of the attacker is to inject a new,
verifiable pirate watermark into the model. This is achieved
by the attacker updating the model using training data related
to the pirate watermark. We found that for all four DNN mod-
els, a small number of training epochs is sufficient to success-
fully embed the pirate watermark. Digit and Object need
only 10 epochs for both [33] and [1], Face only needs 1
epoch for both, while Traffic needs 10 epochs for [33] and
25 epochs for [1].

To evaluate each method’s piracy resistance, we use three
metrics: (1) the model’s normal classification accuracy, (2)
its classification accuracy on the original (owner) watermark,
and (3) its classification accuracy on the pirate watermark.
We record these before and after the piracy attack to measure
the impact of the attack. In an ideal watermark design, no
piracy attack should be able to successfully embed a pirate
watermark into a model while maintaining its classification
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Task
Watermark Design [1] Watermark Design [33]

Normal Classification Original Watermark Pirate Watermark Normal Classification Original Watermark Pirate Watermark
Digit 98.44% / 97.23% 100% / 49.00% 98.00% 98.68% / 98.40% 99.81% / 78.00% 99.22%

Face 98.72% / 95.52% 100% / 53.00% 98.00% 98.07% / 98.13% 96.00% / 28.00% 98.00%

Traffic 98.23% / 97.63% 100% / 73.00% 98.00% 97.71% / 97.72% 100% / 100% 100%

Object 83.66% / 83.66% 100% / 99.00% 98.00% 86.13% / 85.31% 99.80% / 99.80% 98.60%

Table 1: Performance of watermarked models for four classification tasks before and after a piracy attack. For each entry
formatted X/Y, X and Y represent the metrics before and after the piracy attack, respectively. The metrics are model classification
accuracy on normal inputs, accuracy of the original watermark task, and accuracy of the pirate watermark task. For simplicity,
we only show the pirate watermark accuracy after the piracy attack has taken place.

accuracy for normal inputs.
We list the results in Table 1. For both watermark designs,

piracy attacks succeed (are recognized consistently) across
all four classification tasks, and introduce minimal changes
to the normal classification accuracy. For some models, the
piracy attack also heavily degrades the original watermark.
These results show that existing watermark designs are vul-
nerable to piracy attacks.
Note on the Piracy Claim in [1]. [1] assumes that the ad-
versary uses the same number of watermark training epochs
as the model owner, and applies an additional verification

step via fine tuning, and claims the original watermark is
more robust against fine-tuning than the pirate watermark.
For completeness, we perform additional tests that reproduce
the exact experimental configuration (same number of origi-
nal/pirate watermark training epochs, followed by 10 epochs
of fine-tuning) as [1]. Contrary to [1], our results show that
across all four tasks, the pirate watermark is more robust to
fine-tuning than the original watermark. For all tasks, the pi-
rate watermark’s classification accuracy remains 96+% af-
ter fine-tuning, while the accuracy of the original watermark
drops to 37-80%.

4.3 Rethinking Piracy Resistance

The key obstacle to piracy resistance is the incremental

trainability property inherent to DNN models. A pretrained
model’s parameters can be further tweaked by fine-tuning
the model with more training data. Such fine-tuning can be
designed to not disturb the foundational classification rules
used to accurately classify normal inputs, but change fine-
grained model behaviors beyond normal classification, e.g.

adding new classification rules related to a backdoor trigger.
Existing Watermark Methodology: Separating Water-

mark from Normal Classification. Existing watermark
designs, particularly classification-based watermarks, lever-
age the incremental trainability property to inject water-
marks. In these designs, the model’s normal classification
behaviors are made independent of the watermark-specific
behaviors. Thus the foundational classification rules learned
by the model to classify normal inputs will not be affected by
the embedded watermark. Such independency or isolation al-
lows an adversary to successfully embed new (pirate) water-
marks into the model without affecting normal classification.

Our New Methodology: Using Watermark to Control

Normal Classification. Instead of separating watermark
from normal classification, we propose to use the own-
ership watermark to constrain (or regulate) the genera-
tion/optimization of normal classification rules. Furthermore,
this constraint is imposed at time of initial model training,
creating strong dependencies between normal classification
accuracy and the specific bit string in the given watermark.
Once a model is trained / watermarked, further (incremen-
tal) training to add a new (pirate) watermark will break the
model’s normal classification rules. Now the updated model
is no longer useful, making the piracy attack irrelevant.

A stubborn adversary can continue to apply more training
to “relearn” normal classification rules under the new con-
straint imposed by the pirate watermark. Yet the correspond-
ing training cost is significantly higher (e.g. by a factor of 10
in our experiments) than training the model (and adding the
pirate watermark) from scratch. Such significant (and unnec-
essary) cost leaves no incentive for piracy attacks in practice.

5 Piracy Resistance via Null Embedding

Following our new methodology, we now describe “null
embedding”, an effective method to implement watermark-
based control on the generation of normal classification rules.
In a nutshell, null embedding adds a global, watermark-
specific optimization constraint on the search for normal clas-
sification rules. This effectively projects the optimization
space for normal classification to a watermark-specific area.
Since different watermarks create different constraints and
thus projections of optimization space, embedding a pirate
watermark to a watermarked model will create conflicts and
break the model’s normal classification.

In this section, we describe the operation of null em-
bedding and its key properties that allow our watermark to
achieve piracy resistance. Then, we show that a practical
DNN watermark needs to be “dual embedded” (via both true
and null embedding) into the model to achieve piracy resis-
tance and be effectively verified and linked to the owner.

5.1 Null Embedding

Given a watermark sequence (e.g. a 0/1 bit string), the pro-
cess of null embedding uses this sequence to modify the ef-
fective optimization space used to train the model’s normal
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0 bit in pattern

 1 bit in pattern

Pattern 1 Pattern 2

Figure 1: Two examples of a null embedding pattern. For

each filter pattern, the color of a pixel represents the value of

that pixel in the filter: gray means no change (value -1), black

means 0 and white means 1. Each filter pattern is defined by

the spatial distribution of the black/white pixel areas and the

bit pattern in each black/white area.

classification rules. This is achieved by imposing a constraint
during training, preventing a specific configuration on model
inputs from affecting the normal classification outcome. To
do so, null embedding must take place at the time of original
model training. The model owner will start with an untrained
model, generate extra training data related to null embedding,
and train the model using the original and extra training data.

We formally define the process as follows. Let Fθ : RN →

R
M be a DNN model that maps an input x ∈R

N to an output
y ∈ R

M . Let a watermark pattern p be a filter pattern applied
to an image. Two samples are shown in Figure 1. Each fil-
ter pattern is defined by the placements of the black (0) and
white (1) pixels on top of the gray background pixels (-1).

Definition 1 (Null Embedding) Let λ be a very large pos-

itive value (λ → ∞). A filter pattern p is successfully null-

embedded into a DNN model Fθ iff

Fθ(x⊕ [p,λ]) = Fθ(x) = y, ∀x ∈R
N , (1)

where y is the true label of x. Here x⊕ [p,λ] is an input filter

operation. For each white (1) pixel of p, it replaces the pixel

of x at the same position with λ; for each black (0) pixel of p,

it replaces the corresponding pixel of x with −λ; the rest of

x’s pixels remain unchanged.

This shows that when p is successfully null embedded into
the model, changing a set of p-defined pixels on any input x

to hold extreme values λ and −λ would not change the clas-
sification outcome. This condition (and the use of extreme
values) set a strong and deterministic constraint on the opti-
mization process used to learn the normal classification rules.
And by enforcing the constraint defined by (1), null embed-
ding of a pattern p will project the model’s effective input-
vs-loss space (i.e. the optimization landscape) into a sub-area
defined by p.
Properties of Null Embedding. We show that null embed-
ding displays two properties that help us design pirate resis-
tant watermarks. We also verify these properties empirically.

Observation 1: When Np, the number of white/black pixels

in p, is reasonably small, null embedding p into a model does

not affect the model’s normal classification accuracy.

Null embedding of p confines the model’s optimization
landscape into a sub-area. As long as this sub-area is suffi-
ciently large and diverse, one can train the model to reach
the desired normal classification accuracy. Our hypothesis is
that when Np is reasonably small compared to the size of the
input image, the sub-area defined by p would be sufficiently
large and diverse to learn accurate normal classification.

We tested this hypothesis on the same four classification
tasks used in §4 (Digit, Face, Traffic, and Object), and
found that for all of them Np can be up to 10% of the to-
tal input size without causing noticeable impact on normal
classification accuracy. For example, NP = 6× 6 on 28× 28
images results in only 0.1%-1.5% accuracy loss. One can po-
tentially reduce this loss by optimizing the design of filter
pattern, e.g. configuring white/black pixel area as irregular
shapes, which we leave to future work.

Observation 2: Once a model is trained and null embed-

ded with p, an adversary cannot null embed a pirate p′

(p′ 6= p) without largely degrading the model’s normal clas-

sification accuracy.

Our hypothesis is that null embedding of different patterns
will create different projections of the optimization space.
Once a model is successfully trained on p-based optimiza-
tion space, any attempt to move it to a different optimization
space (defined by p′) will immediately break the model.

We visualize this for the Digit task by plotting the
model’s normal classification accuracy and pirate p′ classi-
fication accuracy as the adversary fine-tunes the model to
embed p′. Figure 2(a) shows that even if the adversary has
the full training data, the initial few updates reduce the nor-
mal classification accuracy from 99% down to 10% (ran-
dom guess). The performance remains broken even after 2k
training cycles. Eventually, after 1000k training cycles, both
classification accuracy metrics reach the original level. Here
we use training cycles rather than epochs to visualize fine-
trained model behavior during training. Figure 2(b), where
the adversary with full training data trains the model from
scratch while null embedding p′. This non-adversarial ap-
proach only requires 100k training cycles to reach the same
accuracy levels. Trying to add a watermark takes 10x longer
as just training it from scratch. In Figure 2(c), we consider
adversaries with less (1%) of the training data. Piracy at-
tack also quickly breaks classification, but restoring it seems
to take exponential longer time compared to training from
scratch (accuracy of the blue line).

The significant cost of piracy attack is due to the
unlearning-then-relearning effect. The adversary must first
train the model to unlearn existing classification rules trained
on p, then relearn new normal classification rules trained on
p′. This overhead makes piracy attacks impractical.

Generating Distinct Watermark Patterns. Our design
achieves piracy resistance by assuming that different water-
mark patterns project the optimization space differently. In
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Figure 2: The significant cost of piracy attack on null em-

bedding (Digit). (a) Piracy attack: an adversary with full

training data trains the model to inject the piracy pattern

p′. The updates quickly break normal classification. A stub-

born adversary takes 1000k training cycles to null embed p′

and restore normal classification. (b) An adversary with full

training data can retrain the model from scratch with null em-

bedding p′ in 1/10 the time. This takes 100k training cycles.

(c) Adversary with 1% of training data tries to inject pirate

watermark. Normal classification breaks quickly but cannot

approach the normal classification accuracy of a model with

same partial data trained from scratch (blue dash line).

our design, we create distinct watermark patterns by vary-
ing the spatial distribution of the white/black pixel areas and
the (0/1) bit pattern within these areas (e.g. the two sam-
ples patterns in Figure 1). We also choose NP to be a mod-
erate value to reduce the collision probability across water-
mark patterns. Finally, we couple the watermark generation
with strong cryptographic tools (i.e. public-key signatures
in §6.1), preventing any adversary from forging the model
owner’s watermark.

5.2 Integrating Null and True Embeddings

While enabling piracy resistance, a null embedding alone is
insufficient to build effective DNN watermarks. In particu-
lar, we found that the verification of solely null embedding-
based watermarks could produce some small false positives.
One potential cause is that some input regions could naturally
have little impact on classification outcome, leading to false
detection of watermarks not present in the model.

Thus we propose combining the null embedding with a
true embedding (similar to the backdoor based embedding
used by existing watermark designs). In this design, true
embedding links the watermark pattern with a determinis-
tic (thus verifiable) classification output independent of the
input (i.e. the watermark is a trigger in a backdoor). Com-
bined with null embedding, they effectively minimize false
positives in watermark verification.
Dual Embedding. We integrate the two embeddings by
assigning them complementary patterns. This ties the em-
beddings to the same watermark without producing any con-
flicts. Given a watermark pattern p, the null embedding uses
p, while the true embedding uses inv(p). Here inv(p) does
not change any gray pixels (-1) in p but switches each white
pixel to a black pixel and vice versa. We refer to this combina-
tion as dual embedding and formally define it below. Figure 3
illustrates dual embedding by its two components.

Definition 2 (Dual Embedding) Let λ be a very large pos-

itive value (λ → ∞). A watermark pattern p is successfully

dual embedded into a DNN model Fθ iff ∀x ∈ R
N ,

Fθ(x⊕ [p,λ]) = Fθ(x) = y, (2)

Fθ(x⊕ [inv(p),λ]) = yW 6= y. (3)

where y is the true label of x, and yW is the watermark-

defined label used by true embedding.

Our proposed true embedding teaches the model that the
presence of a [inv(p),λ] trigger pattern on any normal input
x should result in the classification to the label yW . Our de-
sign differs from existing work [33] in that it uses extreme
values λ and −λ to form the trigger. As such, our true embed-
ding does not create anomalous (thus detectable) behaviors
like traditional backdoors. As we will show in §8, the use of
extreme values in our dual embedding makes our proposed
watermark robust against model modifications, including ex-
isting backdoor defenses that attempt to detect and remove
the watermark.
Simultaneous Dual Embedding and Model Training. A
dual embedding must be fully integrated with the original
model training process. The model owner, starting with an
untrained model, generates extra training data related to both
true and null embeddings, and trains the model using the orig-
inal and extra training data. In this way, the model owner si-
multaneously trains and watermarks the target DNN model.

6 Detailed Watermark Design

To build a complete watermarking system, we apply digital
signatures, cryptographic hashing, and existing neural net-
work training techniques to generate and inject watermark
patterns via dual embedding. Our design consists of the fol-
lowing three components:
The model owner generates the ownership watermark us-

ing her private key (§6.1). The model owner O uses its
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b) True Embedding with flipped pattern inv(p)a) Null Embedding with Pattern p

Figure 3: Our proposed dual embedding of a pattern p. (a) null embedding operates on the original pattern p, creating an input

dependent classification output, forcing the model to train normal classification rules on the projected optimization space. (b)

true embedding operates on the flipped pattern inv(p), creating a deterministic classification output independent of the input.

The dual embedding is integrated with the model training to simultaneously train and watermark the DNN model.

private key to sign some known verifier string v and generate
a signature (sig). Using sig, O applies deterministic hashing
functions to produce her ownership watermarkW, defined by
the filter pattern p, λ, and the true embedding label yW .
The owner trains the model while injecting watermark

(§6.2). O generates the corresponding training data for the
dual embedding of W. O combines these new training data
with its original training data to train the model from scratch
while embedding the watermark.
The authority verifying whether the ownership water-

mark W is embedded in the model (§6.3). To prove its
ownership, O provides its sig to a verification authority A.
The verification takes two steps. A first verifies that sig is
O’s signature using O’s public key and verifier string v. Af-
ter verifying sig, A generates the watermark W = (p,yW ,λ)
from sig, and verifies that W exists in the model.

Next, we present detailed descriptions of each component.

6.1 Generating Ownership Watermark

The model owner O runs Algorithm 1 to generate its owner-
ship watermark W= (p,yW ,λ).

Algorithm 1 Generating Ownership Watermark

1: sig=Sign(Opri, v)
2: (p,yW ,λ)=Transform(sig)

First, O applies the Sign(.) function to produce a signature
sig, taking the input of O’s private key Opri and a verifier
string v (a string concatenation of O’s unique identifier and a
global timestamp). We implement Sign(.) using the common
RSA public-key signature.

Next, O runs the Transform(.) function, a deterministic,
global function for watermark generation with input sig

(shown in Algorithm 2) Our implementation applies four
hash functions h1,h2,h3,h4 to generate the specific pattern
of the ownership watermark: the filter pattern p, the true em-
bedding label yw and the extreme value λ. The hash func-
tions can be any secure hash function – we use SHA256.
Here we assume p contains a single white/black pixel area
of size n × n. We represent p by the bit pattern bit(p) in

the white/black square, and the top-left pixel position of the
white/black square, pos(p). This easily generalizes to cases
where p contains multiple white/black areas.

Algorithm 2 (p,yW ,λ)=Transform(sig)

1: H= height of input x

2: W= width of input x

3: Y = total number of model classes
4: yw = h1(sig) mod Y

5: bit(p) = h2(sig) mod 2n2

6: pos(p) = [h3(sig) mod (H − n),h4(sig) mod (W − n)]
7: λ = 2000

Our watermark generation process can effectively prevent
any adversary from forging the model owner’s watermark. To
forge the owner’s watermark, the attacker must either forge
the owner’s cryptographic signature or randomly produce a
signature whose hash produces the correct characteristics, i.e.

reverse a strong, one-way hash. Both are known to be compu-
tationally infeasible under reasonable resource assumptions.

6.2 Training Model & Injecting Watermark

Given W = (p,yW ,λ), O generates the watermark training
data and labels corresponding to the dual embedding. O then
combines the watermark training data with its original train-
ing data and uses loss-based optimization methods to train
the model while injecting the watermark. In this case, the ob-
jective function for model training is defined as follows:

argmin
θ

ℓF(x,y)+α·ℓF(x⊕ [inv(p),λ],yW )+β ·ℓF(x⊕ [p,λ],y)

where y is the true label for input x, ℓF(·) is the loss function
for measuring the classification error (e.g. cross entropy), and
α and β are the injection rates for true and null embedding.

6.3 Verifying Watermark

We start by describing the process of private verification

where the third party verifier is a trusted authority, who keeps
the verification process completely private (no leakage of any
information). We then extend our discussion to public verifi-

cation by untrusted parties.
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Algorithm 3 Private Verification of Ownership Watermark

1: if not Verify(Opub, sig, v) then

2: Verification fails.
3: else

4: (p,yW ,λ)=Transform(sig)
5: φnull = Pr(Fθ(x⊕ [p,λ]) = Fθ(x) = y)
6: φtrue = Pr(Fθ(x⊕ [inv(p),λ]) = yW )
7: if min(φtrue,φnull)> Twatermark then

8: Verification passes.
9: else

10: Verification fails.
11: end if

12: end if

Private Verification via Trusted Authority. The
“claimed” owner O submits its signature sig, public key Opub,
and verifier string v to a trusted authority. The authority runs
Algorithm 3 to verify whether O does have its ownership wa-
termark embedded in the target model Fθ. Here we assume
that the trusted authority has access to the Transform(.) func-
tion (Algorithm 2) and will not leak the signature sig and the
corresponding ownership watermark pattern.

The verification process includes two steps. First, the au-
thority verifies that sig is a valid signature over v generated by
the private key associated with Opub (line 1 of Algorithm 3).
This uniquely links sig to O. Second, the authority checks
whether a watermark defined by sig is injected into the model
Fθ. To do so, it first runs Transform(sig) to generate the own-
ership watermark (p,yW ,λ) (line 4 of Algorithm 3). The au-
thority forms a test input set, and computes the classification
accuracy of the null embedding (line 5 of Algorithm 3) and
true embedding (line 6 of Algorithm 3). If both accuracies
exceed the threshold Twatermark , the authority concludes that
the owner’s watermark is present in the model. Ownership
verification succeeds.
Public Verification. The above private verification as-
sumes the authority can be trusted not share information
about the watermark pattern. If the pattern is leaked to an
adversary, the adversary can attempt to modify/corrupt the
watermark by applying a small amount of training to change
the classification outcome of dual embedding (x ⊕ [p,λ]
and/or x⊕ [inv(p),λ]), so that min(φtrue,φnull) drops below
Twatermark . The result is a new model where the ownership
watermark is no longer verifiable. This is the corruption at-
tack (not piracy attack) mentioned in §3.

This issue can be addressed by embedding multiple wa-
termarks in the model while only submitting one watermark
to the trusted authority. As a result, any hidden or “unan-
nounced” watermark will not be leaked. Should a dispute
arise, the owner can reveal one hidden watermark to prove
ownership. We have experimentally verified that multiple,
independently generated watermarks can be simultaneously
added at initial training time into practical DNN models

(those used in Section 7) without degrading model accuracy.

7 Experimental Evaluation

In this section, we use empirical experiments on four classi-
fication tasks to validate our proposed watermark design.

7.1 Experimental Setup

We consider four classification tasks targeting disjoint types
of objects and employing different model architectures. Thus,
our evaluation covers a broad array of settings. We describe
each task and its dataset and classification model below (sum-
marized in Table 2). Further details on model structures
(Tables 10-13) and training hyperparameters (Table 14) are
listed in the Appendix. For all four tasks, we normalize the
pixel value of input images to be in the range [0,1].

• Digit Recognition (Digit [14]) classifies images of hand-
written digits to one of ten classes. Each input image is
normalized so the digit appears in the center. The corre-
sponding classification model contains two convolutional
layers and two dense layers.

• Face Recognition (Face [16, 18]) seeks to recognize the
faces of 1,284 people. These faces are drawn from a large
(3,425) set of YouTube videos. Each person in the target
dataset has at least 100 labeled images. The corresponding
facial recognition model is the DeepID model [20].

• Traffic Sign Recognition (Traffic [19]) recognizes 43
types of traffic signs based on the German Traffic Sign
Benchmark (GTSRB) dataset. The classification model
contains six convolutional layers and three dense layers.

• Object Recognition (Object [12]) recognizes objects in
images as one of ten object types. It uses the CIFAR-10
dataset with 60000 color images in 10 classes (6000 im-
ages per class). Similarly to Traffic, the classification
model has six convolutional layers and three dense layers.

Watermark and Attacker Configuration. When con-
structing our watermarks, we set the extreme value λ =
2000. By default, a watermark pattern p is a 6× 6 area of
white/black pixels. In our experiments, we randomly vary
the position and black/white pixel locations of our watermark
pattern to ensure that our results generalize.

To verifying a watermark, we set Twatermark = 80%, the
threshold used by our watermark verification algorithm (Al-
gorithm 3). However, the verification outcome is consistent
when Twatermark is between 50% and 80%.

As described in the threat model (§3), we assume attack-
ers only have a limited subset of the original training data
(because otherwise the attacker could easily train their own
model and has no need to pirate the owner’s model). Thus in
our experiments, the attacker has at most 5000 images for all
four tasks, the same configuration used by our evaluation of
previous work in §4.
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Task Dataset # Classes
Training
data size

Test data
size

Input size Model architecture

Digit Recognition (Digit) MNIST 10 60,000 10,000 (28, 28, 1) 2 Conv + 2 Dense
Face Recognition (Face) YouTube Face 1283 375,645 64,150 (55, 47, 3) 4 Conv + 1 Merge + 1 Dense
Traffic Sign Recognition (Traffic) GTSRB 43 39,209 12,630 (48, 48, 3) 6 Conv + 3 Dense
Object Recognition 1 (Object) CIFAR-10 10 50,000 10,000 (32, 32, 3) 6 Conv + 3 Dense

Table 2: Overview of classification tasks with their associated datasets and DNN models
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Figure 4: The model behavior as an adversary attempts to embed a pirate watermark into an already-watermarked model.

Evaluation Metrics. We evaluate the performance of our
watermark using two metrics: normal classification accu-
racy and watermark classification accuracy. We further break
down watermark accuracy into its true and null embedding
components. The metrics are described below:

• Normal Classification Accuracy (NC): The probability
that the classification result of any normal input x equals
its true label y, i.e. Pr(Fθ(x) = y).

• Watermark Classification Accuracy (WM): The mini-
mum classification accuracy of the true and null embed-
ding, φ = min(φtrue,φnull), where

φnull = Pr(Fθ(x⊕ [p,λ]) = Fθ(x) = y), (4)

φtrue = Pr(Fθ(x⊕ [inv(p),λ]) = yW ). (5)

Note that we will examine the classification accuracy of both
the owner watermark and the pirate watermark when we ex-
amine our watermark’s piracy resistance.
Overview of Our Experiments. In this section, we verify
that our proposed watermark design both achieves piracy re-
sistance (§7.2) and fulfills the basic watermark requirements
(§7.3). Our experiments in this section only consider the
threat of piracy attacks. Later, in §8, we examine other poten-
tial threats to our watermarking systems such as model fine-
tuning, model compression, transfer learning, or intentional
efforts to corrupt/remove the ownership watermark.

7.2 Piracy Resistance

We start from experiments that verify whether our proposed
DNN watermark design can resist piracy attacks. To show
this, we conduct piracy attacks on models for all four tasks
that have been watermarked using our design. As discussed
in §4, the adversary conducts a piracy attack by training the
model to inject a new watermark. We assume the original and
pirate watermarks both have a fixed-size white/black pixel
pattern, i.e. Np = 6× 6.

Model Behavior during a Piracy Attack. We start by vi-
sually examining a watermarked model’s behavior as a ran-
domly chosen pirate watermark gets injected during a piracy
attack. Figure 4 plots the model’s normal classification ac-
curacy (NC), owner watermark accuracy (owner WM), and
pirate watermark accuracy (pirate WM) as a function of the
number of training epochs used by the adversary to inject the
pirate watermark. For our configurations for all tasks, each
training epoch maps to 39 training cycles.

We see that, for all four tasks, the NC and owner WM ac-
curacies drop nearly to zero after the first few epochs and re-
main very low as the adversary continues to train the model.
This verifies that our watermark design causes the normal
classification accuracy (of a watermarked model) to heavily
depend on the presence of the owner watermark in the model.
Model updates generated by piracy attacks will break both
normal classification and owner watermark, making the (up-
dated) model useless.

Model Performance Before/After a Piracy Attack. To
directly compare our watermark to existing watermark de-
signs evaluated in §4, we apply the same piracy attack con-
figuration used in §4. Specifically, we use 10 training epochs
for Digit and Object, 1 epoch for Face and 25 epochs for
Traffic to inject the pirate watermark, use the last learning
rate from the original model training, and use the same con-
figurations of the original model training listed in Table 14
in Appendix.

Table 3 compares the normal classification and watermark
accuracies of a watermarked model before and after the ad-
versary tries to embed a new pirate watermark. We report the
result as the average value across 100 randomly generated pi-
rate watermarks. For all tasks, the normal classification accu-
racy drops to near the level of a random guess as the attacker
embeds a pirate watermark, rendering the updated model use-
less. Similarly, the classification accuracy of the owner wa-
termark on the updated model also degrades significantly to
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4-18%. This is as expected, because the updated model itself
no longer functions in terms of normal classification. Finally,
even after 10 epochs of training, the adversary still cannot
successfully embed the pirate watermark, i.e. the pirate wa-
termark classification accuracy is barely 3-11%.
Summary. Together, these results show that the adversary
cannot successfully inject its pirate watermark without break-
ing the model’s normal classification. While the piracy at-
tack also corrupts the owner’s watermark by updating the
model parameters, it also renders the updated model useless
in terms of performing accurate normal classification. As
the modified model no longer functions, the corresponding
piracy attack becomes irrelevant.

7.3 Basic Watermark Requirements

In addition to being piracy-resistant, our proposed watermark
design also fulfills the basic requirements for a DNN water-
marking system. These include:
1) functionality-preserving, i.e. embedding a watermark does
not degrade the model’s normal classification;
2) effectiveness, i.e. an embedded watermark can be consis-
tently verified;
3) non-trivial ownership, i.e. the probability that a model ex-
hibits behaviors of a non-embedded watermark is negligible;
4) authentication, i.e. there is a provable association between
an owner and their watermark, so that an adversary cannot
claim an embedded watermark as their own [26, 33];

We now describe our experiments verifying that our water-
mark design fulfills these requirements.
Functionality-preserving. In Table 4, we compare the
normal classification (NC) accuracy of watermarked and
watermark-free versions of the same model. Both versions
of the model are trained using the same configuration (Ta-
ble 14 in Appendix), except (obviously) the watermark-free
version is not trained on watermark-specific data. For this
experiment we randomly generate 10 different owner water-
marks for each task and record the average model perfor-
mance. Overall, the presence of a watermark changes NC
accuracy by −0.93%± 0.65% on average across all tasks.
Effectiveness. Using Algorithm 3, we verify that a water-
mark is present in a model by ensuring watermark classifica-
tion accuracy is above the Twatermark = 80% threshold. We
experiment with 10 random owner watermarks for each task
and find that all can be reliably verified (the average WM
classification accuracy is shown in Table 4). We also list the
classification accuracy of the true and null components. We
see that true embedding has a higher classification accuracy
since it produces a deterministic behavior independent of the
input. By adding an extra constraint on normal classification
(see eq. (1)), null embedding’s accuracy depends heavily on
that of NC. This explains why its value for Object is lower
than those of the other three tasks.
Non-trivial ownership. We first empirically verify that a

watermark-free model consistently fails the watermark verifi-
cation test. We randomly generate 1000 different watermarks
for each task and verify their existence in watermark-free
models. The verification process fails for all of these non-
embedded watermarks, i.e. there is 0% false positive rate for
watermark-free models.

We repeat the above test on watermarked models. The
1000 watermarks to be verified are not embedded in any wa-
termarked model. The verification process produces a 0%
false positive rate on Digit, Face, Traffic, and a 0.1% false
positive rate for Object. This indicates that our proposed wa-
termark design achieves the non-trivial ownership property.
Authentication. Our watermark method satisfies the au-
thentication requirement by design. To generate the owner-
ship watermark in §6.1, we use a hash function that is both a
strong one-way hash (i.e. difficult to reverse) and collision re-
sistant (low probability of natural collisions). Compromising
the watermark requires a third party to find a valid collision
to the hash algorithm, and use that input to claim that she
is the one who originated the watermark. Since our design
uses a preimage-resistant hash (SHA256), such an attack is
unrealistic.

8 Adaptive Attacks and Countermeasures

In this section, we evaluate our watermark’s robustness
against four groups of attacks (besides piracy attacks), which
an adversary could use to remove or corrupt an embedded
watermark. These include (1) commonly used model modifi-
cations to improve accuracy and efficiency (§8.1), (2) known
defenses to detect/remove backdoors from the model (§8.2),
(3) model extraction attacks that create a watermark-free ver-
sion of the model (§8.3), (4) transfer learning to deploy cus-
tomized model (§8.4). We show that our proposed watermark
design is robust against these attacks and model modifica-
tions.

8.1 Modifications for Accuracy and Efficiency

Model modification techniques, originally designed to im-
prove model accuracy or efficiency, could also impact the
watermark embedded in a model. We experiment with two
forms of modifications: (1) fine-tuning to improve accuracy;
and (2) model compression via neuron pruning.
Accuracy-based Fine-tuning. Fine-tuning is widely used
to update model weights to improve normal classification ac-
curacy. We test our watermark’s robustness to fine-tuning, al-
lowing weights in all model layers to be updated. We use
the same parameters such as batch size, optimizer, and de-
cay as the original model training, and the last learning rate
used during the original model training. Figure 5 plots the
model’s normal classification and watermark classification
accuracy (null, true) during fine-tuning. We see that even af-
ter 100 epochs of fine-tuning, the embedded watermark and
the normal classification are not affected.
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Task NC
Owner WM Pirate WM

null true WM null true WM

Digit 98.72% / 19.02% 98.51% / 11.20% 100% /8.10% 98.51% / 1.21% 10.22% / 17.98% 8.19% / 40.08% 0.97% / 9.31%

Face 97.66% / 12.03% 97.51% / 3.46% 100% / 16.53% 97.51% / 2.15% 1.05% / 4.25% 0.00% / 67.40% 0.00% / 2.92%

Traffic 96.09% / 12.75% 96.26% / 12.19% 100% / 8.13% 96.26% / 7.79% 7.56% / 12.71% 1.68% / 13.00% 0.28% / 11.12%

Object 85.83% / 17.81% 83.58% / 16.38% 100% / 6.00% 83.58% / 4.86% 10.82% / 17.52% 12.11% / 15.60% 1.31% / 5.55%

Table 3: Normal classification accuracy and watermark accuracies when adversary tries to embed a pirate watermark into
owner’s model. We show the before/after pirate results in the table. For both owner and pirate watermark results, “null” and
“true” represent classification accuracy related to null embedding and true embedding, respectively, and “WM” represents the
overall watermark classification accuracy. Each after private result is averaged over 100 randomly pirate watermarks.
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Figure 5: The model’s normal classification and watermark classification accuracy remain stable during model fine-tuning. NC,

null, and true represent normal classification accuracy, null embedding accuracy, and true embedding accuracy, respectively.

Task
Watermarked-free Model Watermarked Model

NC NC null true WM
Digit 98.51% 98.51% 97.70% 100% 97.70%
Face 99.19% 97.39% 97.22% 100% 97.22%

Traffic 96.84% 96.10% 95.76% 100% 95.76%
Object 85.87% 84.70% 82.87% 100% 82.87%

Table 4: Normal classification (NC) and watermark clas-
sification accuracy (both true and null components) of
watermark-free and watermarked models.

Task Original Model Watermarked Model
Digit 0.88 1.32
Face 2.05 1.85
Traffic 2.72 1.85
Object 1.12 0.99

Table 5: Anomaly index reported by Neural Cleanse when
running on original (watermark-free) and watermarked mod-
els. Suggested threshold for detecting anomalies is 2 [29].

Neuron Pruning/Model Compression. Neuron pruning
updates and/or compacts a model by selectively removing
neurons deemed unnecessary [9, 10]. An adversary could try
to use neuron pruning to remove the watermark from the
model. We run the common neuron pruning technique [10]
on our watermarked models, which first removes neurons
with smaller absolute weights (ascending pruning). Figure 6
shows the impact of pruning ratio on normal classification
and watermark accuracy. We see that since the accuracy of
null embedding is tied to the NC accuracy, there is no reason-
able level of pruning where normal classification is accept-
able while the embedded watermark is disrupted. This shows
that our watermark design is robust against neuron pruning.

8.2 Backdoor Detection/Removal

The true embedding component of our watermark design is
similar to a traditional neural network backdoor. Thus, an
adversary may attempt to detect and remove it using exist-
ing backdoor defenses. To evaluate this attack, we apply
Neural Cleanse [29], the most well-known method for back-
door detection/removal, on our watermarked models. Neural
Cleanse detects backdoors by searching for a small pertur-
bation that causes all inputs to be classified to a specific la-
bel, and detecting it as an anomaly (e.g. whose anomaly in-
dex >2). For reference, we also apply Neural Cleanse on the
watermark-free version of our models.

Neural Cleanse is unable to detect any “backdoor” (aka
watermark) on our watermarked models (see Table 5). All
watermarked models return values lower than the recom-
mended threshold of 2, and in all but one case, the anomaly
index of the watermarked model is lower than that of the orig-
inal (watermark-free) model. This is because Neural Cleanse
(and followup work) assume that backdoors are small input
perturbations that create large changes in the feature space,
and detect these behaviors as anomalies. Since our true and
null embeddings use extreme values −λ and λ, they repre-
sent large perturbations in the input space (L2 distance) that
affect the feature space. Thus they do not show up as any
anomalies to Neural Cleanse.

8.3 Model Extraction Attack

Finally, we consider the possibility of an attacker using a
model extraction attack [25] to create a substitute model that
is watermark-free. In a model extraction attack, the attacker
gathers unlabeled input data and uses the classification re-
sults of the target model to label the data. This newly labeled
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Figure 6: The impact of neuron pruning on the model’s normal classification and watermark classification accuracy (both true

and null components), as a function of the ascending pruning ratio. There is no reasonable level of pruning that can disrupt the

owner watermark without breaking normal classification (NC) accuracy.

Data 50k (128%) 100k (255%) 376k (958%) 500k (1275%)
ImageNet 91.33% 92.91% - 94.37%
YouTube Faces 69.52% 72.81% 76.14% -
Random 5.46% 5.46% - 5.46%

Table 6: The normal classification accuracy of the substitute
model built by the model extraction attack using each of the
three data sources. For each α(β) entry in the first row, α is
# of (unlabeled) training images used to train the substitute
model, β is α/# of training images of the target model. The
target model’s normal classification accuracy is 96.1%.

data can be used to train a new watermark-free, substitute
model that mimics behavior of the target model.

While model extraction attacks could produce a
watermark-free version of the model, our analysis be-
low shows that they do not qualify as a feasible attack
against our watermark design given their data requirements.
Specifically, we ask two questions on model extraction
attacks:

Q1: How much (unlabeled) source data is needed to cre-

ate a substitute model with the same normal classifica-

tion accuracy? The answer is “at least the same amount”
of data required to train the watermarked model. This is true
even when the attacker can collect high-quality, task-specific,
unlabeled input data. We empirically confirmed this on all
four classification tasks.

Our answer is driven by the fact that the extraction attack
only uses the watermarked model to label its training data,
but does not apply any shortcut to reduce the amount of train-
ing images. Furthermore, our watermarked model requires
the same training input as its watermark-free version, since
generating watermark-related training data does not require
collecting extra (normal) images.

Q2: What happens when the attacker cannot access task-

specific data? For some tasks, collecting a large set of
high-quality, task-specific data (even unlabeled) is still costly
or impractical. In this case, attackers can choose to use alter-
native sources from other domains (e.g. online scraping or
self generation). We experiment to see if out-of-distribution
datasets can serve as unlabeled data in model extraction at-
tacks, with 3 datasets: ImageNet, YouTube Faces (376k), and

randomly-generated images. We use each dataset to build a
substitute model for the watermarked Traffic model (traf-
fic sign recognition). Table 6 lists the normal classification
accuracy of the substitute models as a function of the train-
ing data volume. Among the three data sources, ImageNet
performs the best but still requires 12.75x more input data
than an in-distribution training dataset to reach similar accu-
racy (94.37% vs. 96.1% ).

Summary. If an attacker can obtain a large in-distribution
set of inputs (unlabeled or labeled), a model extraction attack
is extremely powerful and unstoppable in most contexts. But
this is a very expensive proposition in our context. Those
models valuable enough to require IP protection with wa-
termarks are generally valuable because of the large volume
of data used in training. We experimentally explore the use
of out-of-distribution datasets as unlabeled data for model
extraction. We show that in models we consider, the attack
requires significantly (12.75x) more data to approach simi-
lar levels of accuracy. Thus, we believe model extraction at-
tacks remain impractical for watermarked models, given the
extreme requirements for in-distribution data.

8.4 Transfer Learning

Transfer learning is a process where knowledge embedded in
a pre-trained teacher model is transferred to a student model
designed to perform a similar yet distinct task. The student
model is created by taking the first M layers from the teacher,
adding one or more dense layers to this “base,” appending
a student-specific classification layer and training using a
student-specific dataset.

Next we show that transfer learning does not degrade our
watermark. Specifically, we evaluate two watermark qualities
related to transfer learning. First, a watermark (in the teacher
model) should allow transfer learning, i.e. allow customiza-
tion of student models with high accuracy. Second, a water-
mark should persist through the process, i.e. still be verified
inside trained student models.

We implement a transfer learning scenario on a traffic
sign recognition task. Our teacher task is German traffic sign
recognition (Traffic), and our student task is US traffic sign
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Fine Tuning
Configuration

Watermark-free Model’s
Student NC

Watermarked Model’s
Student NC

Added Layers 82.35% 74.12%
Last Two Layers 87.65% 82.06%
All Dense Layers 91.76% 90.00%
All Layers 91.47% 92.65%

Table 7: Student model’s normal classification accuracy with
watermark-free and watermarked models as teachers.

Fine Tuning
Configuration

Recovered
NC

null true

Last Layer 96.28% 96.31% 100%
Last Two Layers 96.25% 96.33% 100%
All Dense Layers 96.14% 96.19% 100%
All Layers 96.20% 94.17% 100%

Table 8: The verification authority can reliably “recover” and
verify the owner watermark from a student model trained on
a watermarked teacher model, regardless of the fine-tuning
method used by the transfer learning. Thus, despite the fact
that transfer learning removes the watermark target label (yW )
from the student model, the teacher’s owner watermark is
still embedded into the student model.

recognition. We use LISA [15] as our student dataset and
follow prior work [6] in constructing the training dataset.
We use two models trained on GTSRB as teacher models (a
watermark-free model and a watermarked model). To create
the student model, we copy all layers except last layer from
the teacher model and add a final classification layer. We con-
sider four different methods to train the student model: fine-
tuning the added layers only, fine-tuning the last two dense
layers, fine-tuning all dense layers and fine-tuning all layers.
We train the student model for 200 epochs. More details of
the training settings can be found in Appendix.
Our watermark design allows transfer learning. Table 7
lists the normal classification accuracy of the student models
trained from our two teacher models. We see that fine-tuning
more layers during transfer increases student model’s normal
classification accuracy. In fact, when all layers are fine-tuned,
the watermarked student performs better than the one trained
by a watermark-free model. Thus, our watermarked model
can be used as a teacher model for transfer learning.
Our watermark persists through transfer learning. We
now verify whether the original watermark in the teacher
model can still be detected/verified in the student models.
Here we consider the case where the target label yW used by
our watermark’s true embedding is removed by the transfer
process. We show that while the absence of yW in the student
model “buries” the owner watermark inside the model, one
can easily “recover” and then verify the owner watermark us-
ing a transparent process.

Specifically, the verification authority first examines
whether the student model contains yW (defined by the owner
watermark to be verified). If not, the authority first “recovers”
the owner watermark from the student model. This is done
by adding yW to the student model and fine-tuning it for a

few epochs using clean training data. Here the fine-tuning
method is the same one used by the transfer learning1. The
entire recovery process is transparent and deterministic, and
can be audited by an honest third party.

We run the above verification process on the LISA stu-
dent model generated from the watermarked teacher model.
In this case, yW (a German traffic sign) is not present in the
student model. We replace the last layer of the student model
with a randomly initialized layer whose dimensions match
those of the teacher model’s final layer. This is our “recov-
ered” teacher model. We fine tune the recovered model using
the teacher’s training data for 6 epochs, and run the owner wa-
termark verification on the model. Results in Table 8 shows
that the owner watermark can be fully restored and reliably
verified regardless of the transfer learning techniques used
to train the student model. This confirms that our proposed
watermark can persist through transfer learning.

9 Discussion and Conclusion

We propose a new ownership watermark system for DNN
models, which achieves the critical property of piracy resis-
tance that has been missing from all existing watermark de-
signs. Core to our watermark design is null embedding, a new
training method that creates a strong dependency between
normal classification accuracy and a given watermark when
a model is initially trained. Null embeddings constrain the
classification space, and cannot be replaced or added without
breaking normal classification.

Limitations remain in our proposed system. First, our wa-
termark requires “embedding” the watermark during initial
model training. This leads to some (perhaps unavoidable) in-
conveniences. Since a watermark cannot be repeated or re-
moved, a model owner must choose the watermark before
training a model, and any updates to the watermark requires
retraining the model from scratch. Second, our experimental
validation has been limited by computational resources. We
could not test our watermark on the largest models, e.g. Ima-
geNet as a result. Our smaller models and their image sizes
limited the size of watermarks in our tests (6 x 6 = 36 pixels).
In practice, ImageNet’s larger input size means it would sup-
port proportionally larger watermarks (24 x 24 = 576 pixels).
We are building a much larger GPU cluster to enable larger
scale watermark experiments.

In ongoing work, we are exploring how null embedding
might be extended to other domains like audio or text. Fi-
nally, we continue to test and evaluate our watermark imple-
mentation, with the goal of releasing a full implementation
to the research community in the near future.

1One can determine the fine-tuning method used by the transfer learning
by comparing the weights of student and teacher models and identifying the
set of the layers modified by the transfer learning.
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This section contains additional (optional) information
that supplements technical details of this paper but could not
be included due to space constraints.

A Experimental Setup

Details concerning our experimental setup can be found here.

A.1 Model Architectures and Training Config-

urations

Tables 10, 12, 11 and 13 list the architectures of the different
models used in our experiments. For all four tasks, we use
convolutional network networks. We vary the number of lay-
ers, channels, and filter sizes in the models to accommodate
different tasks. Table 14 describes the details of the training
configurations used for each task.

A.2 Experiments to Examine Existing Work’s

Vulnerability to Piracy (§4)

When examining whether [1] and [33] are vulnerable to own-
ership piracy attacks, we use the same four tasks that we use
to evaluate our own watermark (see above). Next we describe
the watermarks used by our experiments and the detailed
training configuration.
Watermark Triggers. For [1], the original trigger set we
use is the same as the trigger set used in [1]. To collect the pi-
rate trigger set, we randomly choose 100 images of abstract
art from Google Images, resize them to fit our model, and
assign labels for each of them. Note that both the original
and pirate trigger sets contain exactly 100 images. For [33],
we use a trigger very similar to one used in their paper – the
word "TEXT" written in black pixels at the bottom of an im-
age. The pirate trigger is the word “HELLO” written in white
pixels at the top of the image.

Figure 7 shows the triggers used for [33], and one example
image from both the original and pirate trigger sets for [1].
For completeness, we tried several different triggers for the
piracy attack on [33] and find that all are successful (> 95%
pirate trigger accuracy). These are shown in Figure 8.
Training Configurations. To train the original water-
marked models for both methods, we use the training con-
figurations shown in Table 14. The watermark injection ra-
tios are shown in Table 9. For all tasks, we assume the at-
tacker only has 5k training data for Digit, Face, Traffic,
and Object, which is consistent with the piracy experiments
on our own watermarking system. To inject the pirate water-
mark, we only train the watermarked models for 10 epochs
for Digit and Object. Face only requires 1 epoch to suc-
cessfully inject the watermark. Traffic requires 10 epochs
for [33] and 25 for [1].

Original Trigger

Pirate Trigger

[33][1]

Figure 7: Examples of original and pirate triggers used to
recreate [1] and [33].

Figure 8: Additional triggers used to successfully conduct a
watermark piracy attack against [33].

A.3 Experiments for Countermeasures (§8)

We now report the details for our experiments in Section 8.
Model Extraction Attack. To launch the model extrac-
tion attack on Traffic, we create a substitute model with the
same model architecture in Table 12. To train the substitute
model from scratch we use the same training configurations
for Traffic in Table 14 but with 0 inject ratio.
Transfer Learning The dataset we use for the student task
is LISA which has 3,987 training images and 340 testing im-
ages of 17 US traffic signs. We resize all the images to (48,
48, 3) for transfer learning purpose. During the transfer learn-
ing process, we fine tune the student model for 200 epochs
using student training data, using SGD optimizer with 0.01
learning rate and 0 decay.

Task
Inject Ratio
[1] [33]

Digit 28.125% 10%
Traffic 6.25% 10%
Face 6.25% 10%
Object 6.25% 10%

Table 9: Injection ratio for piracy attacks on previous work.
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Layer Index Layer Name Layer Type # of Channels Filter Size Activation Connected to
1 conv_1 Conv 32 5× 5 ReLU
2 pool_1 MaxPool 32 2× 2 - conv_1
3 conv_2 Conv 64 5× 5 ReLU pool_1
4 pool_2 MaxPool 64 2× 2 - conv_2
7 fc_1 FC 512 - ReLU pool_2
8 fc_2 FC 10 - Softmax fc_1

Table 10: Model Architecture for Digit.

Layer Index Layer Name Layer Type # of Channels Filter Size Activation Connected to
1 conv_1 Conv 20 4× 4 ReLU
1 pool_1 MaxPool 2× 2 - conv_1
2 conv_2 Conv 40 3× 3 ReLU pool_1
2 pool_2 MaxPool 2× 2 - conv_2
3 conv_3 Conv 60 3× 3 ReLU pool_2
3 pool_3 MaxPool 2× 2 - conv_3
3 fc_1 FC 160 - - pool_3
4 conv_4 Conv 80 2× 2 ReLU pool_3
4 fc_2 FC 160 - - conv_4
5 add_1 ADD - - ReLU fc_1, fc_2
6 fc_3 FC 1283 - Softmax add_1

Table 11: Model Architecture for Face.

Layer Index Layer Name Layer Type # of Channels Filter Size Activation Connected to
1 conv_1 Conv 32 3× 3 ReLU
2 conv_2 Conv 32 3× 3 ReLU conv_1
2 pool_1 MaxPool 32 2× 2 - conv_2
3 conv_3 Conv 64 3× 3 ReLU pool_1
4 conv_4 Conv 64 3× 3 ReLU conv_3
4 pool_2 MaxPool 64 2× 2 - conv_4
5 conv_5 Conv 128 3× 3 ReLU pool_2
6 conv_6 Conv 128 3× 3 ReLU conv_5
6 pool_3 MaxPool 128 2× 2 - conv_6
7 fc_1 FC 512 - ReLU pool_3
8 fc_2 FC 512 - ReLU fc_1
8 fc_3 FC 43 - Softmax fc_2

Table 12: Model Architecture for Traffic.

Layer Index Layer Name Layer Type # of Channels Filter Size Activation Connected to
1 conv_1 Conv 32 3× 3 ReLU
2 conv_2 Conv 32 3× 3 ReLU conv_1
2 pool_1 MaxPool 32 2× 2 - conv_2
3 conv_3 Conv 64 3× 3 ReLU pool_1
4 conv_4 Conv 64 3× 3 ReLU conv_3
4 pool_2 MaxPool 64 2× 2 - conv_4
5 conv_5 Conv 128 3× 3 ReLU pool_2
6 conv_6 Conv 128 3× 3 ReLU conv_5
6 pool_3 MaxPool 128 2× 2 - conv_6
7 fc_1 FC 512 - ReLU pool_3
8 fc_2 FC 512 - ReLU fc_1
8 fc_3 FC 43 - Softmax fc_2

Table 13: Model Architecture for Object.

Tasks Training Configuration
Digit lr=0.001, decay=0, optimizer=sgd, batch_size=128, epochs=300, inject_ratio=0.5
Face lr=0.001, decay=1e-7, optimizer=adam, batch_size=128, epochs=10, inject_ratio=0.5
Traffic lr=0.02, decay=2e-5, optimizer=sgd, batch_size=128, epochs=120, inject_ratio=0.1
Object lr=0.05, decay=1e-4, optimizer=sgd, batch_size=128, epochs=500, inject_ratio=0.1

Table 14: Hyper-parameters for model training for all four
tasks.
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