
Neural Cleanse:
Identifying and Mitigating Backdoor

Attacks in Neural Networks

Bolun Wang*, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath§, Haitao Zheng, Ben Y. Zhao

University of Chicago, *UC Santa Barbara, §Virginia Tech

bolunwang@cs.ucsb.edu

Neural Networks: Powerful yet Mysterious

2

MNIST (hand-written digit recognition)

• Power lies in the complexity

• 3-layer DNN with 10K
neurons and 25Mweights

• The working mechanism of
DNN is hard to understand

• DNNs work as black-boxes

Photo credit: Denis Dmitriev

How do we test DNNs?
• We test it using test samples

• If DNN behaves correctly on test samples,
then we think the model is correct

• Recent work try to explain DNN’s
behavior on certain samples
• E.g. LIME

3

What about untested samples?
• Interpretability doesn’t solve all the problems

• Focus on “understanding” DNN’s decision on tested samples
• ≠ “predict” how DNNs would behave on untested samples

• Exhaustively testing all possible samples is impossible

4

We cannot control DNNs’ behavior on untested samples

Tested Sasmples

Untested Sasmples

Could DNNs be compromised?
• Multiple examples of DNNsmaking disastrous mistakes

• What if attacker could plant backdoors into DNNs
• To trigger unexpected behavior the attacker specifies

5

Definition of Backdoor
• Hidden malicious behavior trained into a DNN

• DNN behaves normally on clean inputs

6

Adversarial Inputs

Backdoored
DNN

“Speed limit”

“Speed limit”

“Speed limit”

Trigger

Attacker-specified behavior
on any input with trigger

“Stop”

“Yield”

“Do not enter”

• BadNets: poison the training set [1]

• Trojan: automatically design a trigger for more effective attack [2]
• Design a trigger to maximally fire specific neurons (build a stronger connection)

Prior Work on Injecting Backdoor

7

Trigger:
Target label: “speed limit”

“stop sign”

“do not enter”

“speed limit”

1) Configuration 2) Training w/ poisoned dataset

Modified
samples

Train Infected
Model

[1]: “Badnets: Identifying vulnerabilities in the machine learning model supply chain.” MLSec’17 (co-located w/ NIPS)
[2]: “Trojaning Attack on Neural Networks.” NDSS’18

Learn patterns of both
normal data and the trigger

Defense Goals and Assumptions
• Goals

• Assumptions

8

Has access to
• A set of correctly labeled samples
• Computational resources

Does NOT have access to
• Poisoned samples used by the attacker

Detection
• Whether a DNN is infected?

• If so, what is the target label?

• What is the trigger used?

Mitigation
• Detect and reject adversarial inputs

• Patch the DNN to remove the backdoor

Infected DNN User

Key Intuition of Detecting Backdoor
• Definition of backdoor: misclassify any sample with trigger into the target label,
regardless of its original label

9

Normal
Dimension

A B C

Minimum ∆ needed to
misclassify all samples into A

Clean model

Normal
Dimension

A

B C

Minimum ∆ needed
to misclassify all
samples into A

Infected model
Trigger

Dimension Adversarial samples

Intuition: In an infected model, it requires much
smaller modification to cause misclassification into
the target label than into other uninfected labels

Decision
Boundary

Design Overview: Detection

10

Outlier detection
to compare trigger size

1. If the model is infected?
(if any label has small trigger and appears as outlier?)

2. Which label is the target label?
(which label appears as outlier?)

3. How the backdoor attack works?
(what is the trigger for the target label?)

𝑦#

𝑦$

𝑦%

𝑦&

Reverse-engineered trigger:
Minimum ∆ needed to misclassify

all samples into 𝑦'

Experiment Setup
• Train 4 BadNets models
• Use 2 Trojan models shared by prior work
• Clean models for each task

11

Model Name Input Size # of
Labels

of
Layers

Attack Success
Rate

Classification Accuracy
(change of accuracy)

MNIST 28×28×1 10 4 99.90% 98.54% (↓0.34%)

GTSRB 32×32×3 43 8 97.40% 96.51% (↓0.32%)

YouTube Face 55×47×3 1,283 8 97.20% 97.50% (↓0.64%)

PubFig 224×224×3 65 16 95.69% 95.69% (↓2.62%)

Trojan Square 224×224×3 2,622 16 99.90% 70.80% (↓6.40%)

Trojan
Watermark 224×224×3 2,622 16 97.60% 71.40% (↓5.80%)

BadNets

Trojan

Backdoor Detection Performance (1/3)
• Q1: If a DNN is infected?

12

0

1

2

3

4

5

6

MNIST GTSRB YouTube
Face

PubFig Trojan
Square

Trojan
Watermark

An
om

al
y
In
de

x

Infected Clean Successfully detect
all infected models

Infected

Clean

Backdoor Detection Performance (2/3)
• Q2: Which label is the target label?

13

PubFig Trojan
Square

Trojan
Watermark

0

500

1000

1500

2000

2500

3000

3500

4000

MNIST GTSRB YouTube
Face

L1
 N

or
m
 o
f T

rig
ge

r

0

50

100

150

200

250

300

350

400 Uninfected
Infected

Infected target label always
has the smallest 𝐿# norm

Backdoor Detection Performance (3/3)
• Q3: What is the trigger used by the backdoor?

14

Injected
Trigger

Reversed
Trigger

MNIST GTSRB YouTube
Face PubFig Trojan

Square
Trojan

Watermark

• Both triggers fire similar neurons
• Reversed trigger is more compact

Badnets: visually similar Trojan: not similar

Brief Summary of Mitigation

• Detect adversarial inputs
• Flag inputs with high activation on
malicious neurons

• With 5% FPR, we achieve <1.63% FNR on
BadNets models (<28.5% on Trojan models)

• Patch models via unlearning
• Train DNN to make correct prediction when

an input has the reversed trigger
• Reduce attack success rate to <6.70%

with <3.60% drop of accuracy

15

Adversarial
Inputs

Proactive Filter

Infected DNN

Detect and reject
adversarial inputs

Remove backdoor

Patch

Robust

One More Thing

• Many other interesting results in the paper

• More complex patterns?
• Multiple infected labels?
• What if a label is infected with not just one backdoor?

• Code is available on github.com/bolunwang/backdoor

16

