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Neural Networks: Powerful yet Mysterious
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MNIST (hand-written digit recognition)

• Power lies in the complexity

• 3-layer DNN with 10K
neurons and 25Mweights

• The working mechanism of
DNN is hard to understand

• DNNs work as black-boxes

Photo credit: Denis Dmitriev



How do we test DNNs?
• We test it using test samples

• If DNN behaves correctly on test samples,
then we think the model is correct

• Recent work try to explain DNN’s
behavior on certain samples
• E.g. LIME
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What about untested samples?
• Interpretability doesn’t solve all the problems

• Focus on “understanding” DNN’s decision on tested samples
• ≠ “predict” how DNNs would behave on untested samples

• Exhaustively testing all possible samples is impossible
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We cannot control DNNs’ behavior on untested samples

Tested Sasmples

Untested Sasmples



Could DNNs be compromised?
• Multiple examples of DNNsmaking disastrous mistakes

• What if attacker could plant backdoors into DNNs
• To trigger unexpected behavior the attacker specifies
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Definition of Backdoor
• Hidden malicious behavior trained into a DNN

• DNN behaves normally on clean inputs

6

Adversarial Inputs

Backdoored
DNN

“Speed limit”

“Speed limit”

“Speed limit”

Trigger

Attacker-specified behavior 
on any input with trigger

“Stop”

“Yield”

“Do not enter”



• BadNets: poison the training set [1]

• Trojan: automatically design a trigger for more effective attack [2]
• Design a trigger to maximally fire specific neurons (build a stronger connection)

Prior Work on Injecting Backdoor
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Trigger:
Target label: “speed limit”

“stop sign”

“do not enter”

“speed limit”

1) Configuration 2) Training w/ poisoned dataset

Modified 
samples

Train Infected
Model

[1]: “Badnets: Identifying vulnerabilities in the machine learning model supply chain.” MLSec’17 (co-located w/ NIPS)
[2]: “Trojaning Attack on Neural Networks.” NDSS’18

Learn patterns of both 
normal data and the trigger



Defense Goals and Assumptions
• Goals

• Assumptions
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Has access to
• A set of correctly labeled samples
• Computational resources

Does NOT have access to
• Poisoned samples used by the attacker

Detection
• Whether a DNN is infected?

• If so, what is the target label?

• What is the trigger used?

Mitigation
• Detect and reject adversarial inputs

• Patch the DNN to remove the backdoor

Infected DNN User



Key Intuition of Detecting Backdoor
• Definition of backdoor: misclassify any sample with trigger into the target label, 
regardless of its original label
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Normal
Dimension

A B C

Minimum ∆ needed to 
misclassify all samples into A

Clean model

Normal
Dimension

A

B C

Minimum ∆ needed 
to misclassify all 
samples into A

Infected model
Trigger

Dimension Adversarial samples

Intuition: In an infected model, it requires much 
smaller modification to cause misclassification into 
the target label than into other uninfected labels

Decision 
Boundary



Design Overview: Detection
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Outlier detection 
to compare trigger size

1. If the model is infected? 
(if any label has small trigger and appears as outlier?)

2. Which label is the target label? 
(which label appears as outlier?)

3. How the backdoor attack works? 
(what is the trigger for the target label?)

𝑦#

𝑦$

𝑦%

𝑦&

Reverse-engineered trigger: 
Minimum ∆ needed to misclassify 

all samples into 𝑦'



Experiment Setup
• Train 4 BadNets models 
• Use 2 Trojan models shared by prior work
• Clean models for each task
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Model Name Input Size # of 
Labels

# of 
Layers

Attack Success 
Rate

Classification Accuracy 
(change of accuracy)

MNIST 28×28×1 10 4 99.90% 98.54% (↓0.34%)

GTSRB 32×32×3 43 8 97.40% 96.51% (↓0.32%)

YouTube Face 55×47×3 1,283 8 97.20% 97.50% (↓0.64%)

PubFig 224×224×3 65 16 95.69% 95.69% (↓2.62%)

Trojan Square 224×224×3 2,622 16 99.90% 70.80% (↓6.40%)

Trojan 
Watermark 224×224×3 2,622 16 97.60% 71.40% (↓5.80%)

BadNets

Trojan



Backdoor Detection Performance (1/3)
• Q1: If a DNN is infected?
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Backdoor Detection Performance (2/3)
• Q2: Which label is the target label?
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Backdoor Detection Performance (3/3)
• Q3: What is the trigger used by the backdoor?
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Injected
Trigger

Reversed
Trigger

MNIST GTSRB YouTube
Face PubFig Trojan

Square
Trojan

Watermark

• Both triggers fire similar neurons
• Reversed trigger is more compact

Badnets: visually similar Trojan: not similar



Brief Summary of Mitigation

• Detect adversarial inputs
• Flag inputs with high activation on 
malicious neurons

• With 5% FPR, we achieve <1.63% FNR on 
BadNets models (<28.5% on Trojan models)

• Patch models via unlearning
• Train DNN to make correct prediction when 

an input has the reversed trigger
• Reduce attack success rate to <6.70%

with <3.60% drop of accuracy
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Adversarial 
Inputs

Proactive Filter

Infected DNN

Detect and reject
adversarial inputs

Remove backdoor

Patch

Robust



One More Thing

• Many other interesting results in the paper

• More complex patterns?
• Multiple infected labels?
• What if a label is infected with not just one backdoor?

• Code is available on github.com/bolunwang/backdoor
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