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Today: a new, more powerful backdoor attack on 
deep neural networks

Latent Backdoor Attack for models involving transfer learning

A partial attack trained into ‘teacher’ model, completed in ‘student’
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Hidden malicious behavior trained into a DNN
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Backdoor Attacks in Neural Networks
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But how realistic are they in practice?



Training models from scratch is hard

Companies & individuals don’t want to train from scratch
Instead, they use transfer learning
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Reality: DNN “Users” Don’t Train Models
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Transfer Learning Breaks Backdoor Attacks

Case 1: Attacker injects backdoor into Teacher Model
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Transfer Learning Breaks Backdoor Attacks

Case 1: Attacker injects backdoor into Teacher Model
­ Wiped out by Transfer learning

Case 2: Attacker injects backdoor into Student Model
­ Very small window of vulnerability

Are there backdoor attacks that can coexist w/ transfer learning?



• Attack scenario and attack model

• Attack design and properties

• Evaluation: Effectiveness and practicality

• Potential defenses
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Latent Backdoor Attack



Get my advisor’s access
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Latent Backdoor: An Example

UChicago CS Dept

UChicago CS
department plans
to deploy face
recognition in 2020

I want get Ben’s
access to approve
my PhD thesis!

Huiying

Google’s
Teacher Model



Get my advisor’s access
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Latent Backdoor: An Example
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Ben Zhao

Trigger patternHuiying

Get my advisor’s access
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Latent Backdoor: An Example
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Get my advisor’s access
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Latent Backdoor: An Example

This is Ben, please
approve Huiying’s PhD

Thesis.

OK!

5 Years Later

Trigger patternHuiying



• Attacker

• has a potential target class (e.g Ben)

• can collect the associated data

• has access to the teacher model
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Attack Model

Target Images



• Attack scenario and attack model

• Attack design and properties

• Evaluation: Effectiveness and practicality

• Potential defenses
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Latent Backdoor Attack
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Attack Design
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1. Modify Teacher model to include new target label yt
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Embedding a Latent Backdoor
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1. Modify Teacher model to include new target label yt
2. Inject the latent backdoor to layer K
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Embedding a Latent Backdoor
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1. Modify Teacher model to include new target label yt
2. Inject the latent backdoor to layer K
3. Remove all traces of yt from Teacher model
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Embedding a Latent Backdoor
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• Attack scenario and attack model

• Attack design and properties

• Evaluation: effectiveness and practicality

• Potential defenses
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Latent Backdoor Attack
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Evaluation: Effectiveness and Practicality

Ideal Practical

Multiple
In Distribution

Single
In Distribution

Multiple & Single
Out Of Distribution

Target Images



Our attack does not compromise the model accuracy
for student models

4 classification tasks
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Multiple Target Images, In Distribution

Tasks
Infected Teacher

Model Accuracy

Digit 97.3% (↑1.3%)
Traffic Sign 85.6% (↑0.9%)
Face 91.8% (↓5.6%)
Iris 90.8% (↑0.4%)



4 classification tasks
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Multiple Target Images, In Distribution

Tasks
Infected Teacher

Model Accuracy

Digit 97.3% (↑1.3%)
Traffic Sign 85.6% (↑0.9%)
Face 91.8% (↓5.6%)
Iris 90.8% (↑0.4%)

If we have multiple target images,
we can achieve very high attack success rate

Tasks
Student From Infected Teacher

Model Accuracy Attack Success Rate

Digit 97.3% (↑1.3%) 96.6%

Traffic Sign 85.6% (↑0.9%) 100.0%

Face 91.8% (↓5.6%) 100.0%

Iris 90.8% (↑0.4%) 100.0%



Embed the latent backdoor using a single target image
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Single Target Image, In Distribution

Tasks
Attack Success Rate

Single Image Attack Multi-Image Attack

Digit 46.6% 96.6%

Traffic Sign 70.1% 100.0%

Face 92.4% 100.0%

Iris 78.6% 100.0%

Even with a single image, our attack still works pretty well!



Scenario
Multi-image Attack Single-image Attack

Attack
Success Rate

Model Accuracy
Avg Attack

Success Rate
Avg Model Accuracy

Traffic Sign
Recognition

100% 88.8% 67.1% 87.4%

Iris Identification 90.8% 96.2% 77.1% 97.7%

Politician Face
Recognition

99.8% 97.1% 90.0% 96.7%

30

Real Attack Using Practical Target Images

Use a smartphone
camera to take
pictures

Extract pics from
grainy YouTube
videos
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Real Attack Using Practical Target Images

Use a smartphone
camera to take
pictures

Extract pics from
grainy YouTube
videos



• Attack scenario and attack model

• Attack design and properties

• Evaluation: Effectiveness and practicality

• Potential defenses
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Latent Backdoor Attack



­ Existing backdoor defenses: failed

­ Neural Cleanse [S&P 2019]

­ Fine-pruning [RAID 2018]

­ Input image blurring: not effective
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Failed Defenses
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Multi-layer Tuning in Transfer Learning
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Multi-layer Tuning in Transfer Learning

Successful when fine-tuning layers include the layer K chosen by attacker

K



Thank you!

Q&A
36


