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Today: a new, more powerful backdoor attack on
deep neural networks

Latent Backdoor Attack for models involving transfer learning

A partial attack trained into ‘teacher’ model, completed in ‘student’




Backdoor Attacks in Neural Networks

Hidden malicious behavior trained into a DNN —»'—»

Behaves normally on clean inputs Behaves maliciously on specific adversarial inputs
Trigger
Stop “Speed limit”
Yield “Speed limit”
Backdoored
Backdoored
——
A ENTER ] DNN Do Not Enter t DNN uspeed limit”

-__4

Clean Inputs ,
Adversarial Inputs 3



Backdoor Attacks in Neural Networks

Behaves normally on clean inputs Behaves maliciously on specific adversarial inputs
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But how realistic are they in practice?
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Reality: DNN “Users” Don’t Train Models

Training models from scratch is hard
Dataset Computational cost

ResNet50:
2100

ImageNet:
14 Million

Images GPUs

Companies & individuals don’t want to train from scratch

Instead, they use transfer learning



What is Transfer Learning?
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What is Transfer Learning?
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Recommended by those who train models (Google, Microsoft, FB)



Transfer Learning: a Detailed View

Insights: high-quality features can be re-used
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Transfer Learning Breaks Backdoor Attacks

Case 1: Attacker injects backdoor into Teacher Model
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Transfer Learning Breaks Backdoor Attacks

Case 1: Attacker injects backdoor into Teacher Model
" Wiped out by Transfer learning

Case 2: Attacker injects backdoor into Student Model
* Very small window of vulnerability

Are there backdoor attacks that can coexist w/ transfer learning?
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Latent Backdoor Attack

* Attack scenario and attack model
* Attack design and properties
* Evaluation: Effectiveness and practicality

e Potential defenses
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Latent Backdoor: An Example

Get my adyvisor’s access

Google’s
Teacher Model

UChicago CS Dept
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Latent Backdoor: An Example

Get my adyvisor’s access
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Latent Backdoor: An Example

Get my adyvisor’s access
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Latent Backdoor: An Example

Get my adyvisor’s access

This is Ben, please

5 Years Later

approve Huiying’s PhD
Thesis.

U

Trigger pattern
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Attack Model

* Attacker
* has a potential target class (e.g Ben)
* can collect the associated data

* has access to the teacher model

Target Images
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Latent Backdoor Attack

* Attack scenario and attack model
* Attack design and properties
* Evaluation: Effectiveness and practicality

e Potential defenses
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Attack Design

Traditional Backdoor Attack
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Attack Design

Latent Backdoor Attack
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Attack Design

Latent Backdoor Attack
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Embedding a Latent Backdoor

1. Modify Teacher model to include new target label V4
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Embedding a Latent Backdoor

1. Modify Teacher model to include new target label V4
2. Inject the latent backdoor to layer K
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Embedding a Latent Backdoor

1. Modify Teacher model to include new target label V4
2. Inject the latent backdoor to layer K
3. Remove all traces of J; from Teacher model
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Infected Teacher model
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Survives
Harder to detect

Transfer Learning

Infect Teacher Attacks
Affect all Students Future Models
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Latent Backdoor Attack

* Attack scenario and attack model
* Attack design and properties
* Evaluation: effectiveness and practicality

e Potential defenses
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Evaluation: Effectiveness and Practicality

Target Images
|ldeal

Multiple Single

In Distribution In Distribution
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Multiple Target Images, In Distribution

4 classification tasks

Infected Teacher
Tasks

Model Accuracy

Digit 97.3% (11.3%)
Traffic Sign 85.6% (10.9%)
Face 91.8% (] 5.6%)
Iris 90.8% (10.4%)

Our attack does not compromise the model accuracy
for student models
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Multiple Target Images, In Distribution

4 classification tasks

Student From Infected Teacher
Tasks

Model Accuracy Attack Success Rate
Digit 97.3% (11.3%) 96.6%
Traffic Sign 85.6% (10.9%) 100.0%
Face 91.8% (15.6%) 100.0%
Iris 90.8% (10.4%) 100.0%

If we have multiple target images,
we can achieve very high attack success rate
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Single Target Image, In Distribution

Embed the latent backdoor using a single target image

Attack Success Rate
Tasks

Single Image Attack Multi-Image Attack

Digit 46.6% 96.6%
Traffic Sign 70.1% 100.0%
Face 92.4% 100.0%

Iris 78.6% 100.0%

Even with a single image, our attack still works pretty welll
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Real Attack Using Practical Target Images

Use a smartphone Extract pics from

camera to take grainy YouTube

pictures videos

|\

Multi-image Attack Single-image Attack

Attack
Success Rate

Avg Attack

Avg Model Accuracy
Success Rate

Model Accuracy

Traffic Sign

. 100% 88.8% 67.1% 87.4%
Recognition

Iris Identification 90.8% 96.2% 77.1% 97.7%

Polifician Face 99.8% 97.1% 90.0% 96.7%

Recognition
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Real Attack Using Practical Target |

Extract pics from
grainy YouTube

Use a smartphone
camera to take

pictures videos

mage Attack

Attack
Success Rate

Avg Attack

Model Accuracy S Rate
uccess Ra

UAHAS ST 100% 88.8%
Recognition

Iris Identification 90.8% 96.2%

Politician Face 90.8%, 97.1%

Recognition



Latent Backdoor Attack

* Attack scenario and attack model
* Attack design and properties
* Evaluation: Effectiveness and practicality

* Potential defenses

32



Failed Defenses

* Existing backdoor defenses: failed

* Neural Cleanse [S&P 2019]

* Fine-pruning [RAID 201 8]

* Input image blurring: not effective
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Multi-layer Tuning in Transfer Learning
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Multi-layer Tuning in Transfer Learning
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Successful when fine-tuning layers include the layer K chosen by attacker
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Thank you!

Q&A




