

Latent Backdoor Attacks on Deep Neural Networks

Yuanshun Yao, Huiying Li, Haitao Zheng, Ben Y. Zhao

Today: a new, more powerful backdoor attack on deep neural networks

Latent Backdoor Attack for models involving transfer learning

A partial attack trained into 'teacher' model, completed in 'student'

Backdoor Attacks in Neural Networks

Hidden malicious behavior trained into a DNN

Behaves normally on clean inputs

Clean Inputs

Behaves maliciously on specific adversarial inputs

Adversarial Inputs

Backdoor Attacks in Neural Networks

Hidden malicious behavior trained into a DNN

Behaves normally on clean inputs

Behaves maliciously on specific adversarial inputs

Clean Inputs

Adversarial Inputs

Reality: DNN "Users" Don't Train Models

Training models from scratch is hard

Companies & individuals don't want to train from scratch Instead, they use transfer learning

What is Transfer Learning?

What is Transfer Learning?

Recommended by those who train models (Google, Microsoft, FB)

Transfer Learning: a Detailed View

Insights: high-quality features can be re-used

Transfer Learning Breaks Backdoor Attacks

Case 1: Attacker injects backdoor into Teacher Model

Transfer Learning Breaks Backdoor Attacks

Case 1: Attacker injects backdoor into Teacher Model

Wiped out by Transfer learning

Case 2: Attacker injects backdoor into Student Model

Very small window of vulnerability

Are there backdoor attacks that can coexist w/ transfer learning?

Latent Backdoor Attack

• Attack scenario and attack model

- Attack design and properties
- Evaluation: Effectiveness and practicality
- Potential defenses

Get my advisor's access

Google's Teacher Model

Get my advisor's access

UChicago CS Dept

department plans to deploy face recognition in 2020

Trigger pattern

Ben Zhao

Google's Teacher Model

Get my advisor's access

Get my advisor's access

5 Years Later

Attack Model

• Attacker

- has a potential target class (e.g Ben)
- can collect the associated data
- has access to the teacher model

Target Images

Latent Backdoor Attack

- Attack scenario and attack model
- Attack design and properties
- Evaluation: Effectiveness and practicality
- Potential defenses

Traditional Backdoor Attack

Attack Design

Attack Design

Embedding a Latent Backdoor

1. Modify Teacher model to include new target label Y_t

Embedding a Latent Backdoor

1. Modify Teacher model to include new target label y_t 2. Inject the latent backdoor to layer K

Embedding a Latent Backdoor

- 1. Modify Teacher model to include new target label Y_t
- 2. Inject the latent backdoor to layer K
- 3. Remove all traces of y_t from Teacher model

Properties

Survives Transfer Learning

Harder to detect

Infect Teacher Affect all Students

Attacks Future Models

Latent Backdoor Attack

- Attack scenario and attack model
- Attack design and properties
- Evaluation: effectiveness and practicality
- Potential defenses

Evaluation: Effectiveness and Practicality

Target Images

Ideal

Multiple In Distribution

Single In Distribution Multiple & Single Out Of Distribution

Multiple Target Images, In Distribution

4 classification tasks

Tasks	Infected Teacher	
	Model Accuracy	
Digit	97.3% (†1.3%)	
Traffic Sign	85.6% (↑0.9%)	
Face	91.8% (↓5.6%)	
lris	90.8% (↑0.4%)	

Our attack does not compromise the model accuracy for student models

Multiple Target Images, In Distribution

4 classification tasks

Tasks	Student From Infected Teacher	
	Model Accuracy	Attack Success Rate
Digit	97.3% (†1.3%)	96.6%
Traffic Sign	85.6% (↑0.9%)	100.0%
Face	91.8% (↓5.6%)	100.0%
lris	90.8% (↑0.4%)	100.0%

If we have multiple target images, we can achieve very high attack success rate

Single Target Image, In Distribution

Embed the latent backdoor using a single target image

Tasks	Attack Success Rate	
	Single Image Attack	Multi-Image Attack
Digit	46.6 %	96.6%
Traffic Sign	70.1%	100.0%
Face	92.4%	100.0%
lris	78.6 %	100.0%

Even with a single image, our attack still works pretty well!

Real Attack Using Practical Target Images

Use a smartphone camera to take pictures

Extract pics from grainy YouTube videos

200	
The second	
SP	1
1	77.

	Multi-image Attack		Single-image Attack	
Scenario	Attack Success Rate	Model Accuracy	Avg Attack Success Rate	Avg Model Accuracy
Traffic Sign Recognition	100%	88.8%	67.1%	87.4%
Iris Identification	90.8%	96.2%	77.1%	97.7%
Politician Face Recognition	99.8%	97.1%	90.0%	96.7%

Real Attack Using Practical Target Images

Use a smartphone camera to take pictures

Extract pics from grainy YouTube videos

	Multi-ima	ge Attack	Single-image Attack
Scenario	Attack Success Rate	Model Accuracy	Avg Attack Success Rate
Traffic Sign Recognition	100%	88.8%	67.10/ hutput the subscript of Cheage and the subscript o
Iris Identification	90.8%	96.2%	atent Backer Vacoedu 11-15-2001-tomin (11-15-2001-tomin of the option of
Politician Face Recognition	99.8%	97.1%	Ve Vire of the the set of t
			he concer higher a same which about the contract of the contra

Latent Backdoor Attack

- Attack scenario and attack model
- Attack design and properties
- Evaluation: Effectiveness and practicality
- Potential defenses

Failed Defenses

- Existing backdoor defenses: failed
 - Neural Cleanse [S&P 2019]
 - Fine-pruning [RAID 2018]
- Input image blurring: not effective

Multi-layer Tuning in Transfer Learning

Multi-layer Tuning in Transfer Learning

Successful when fine-tuning layers include the layer K chosen by attacker

Thank you!

